

	

319	

Article	

Transactional	Scripts	in	Contract	Stacks	

Shaanan	Cohney†	and	David	A.	Hoffman††	

Introduction		..	320
I.		Designing	Expensive,	Buggy	Scripts		..	328

A. How	(Commercial)	Coding	Works		...	328
B. An	Introduction	to	the	Blockchain	Platform		331
C. Ethereum	and	Scripting		..	335
D. Coding	on	Ethereum		...	341
E. Summary		...	346

II.		Transactional	Scripts	in	the	Real	World		..	348
A. Tokens		..	348
B. Exchanges		...	351
C. Oracles		..	354

III.		Scripts	and	Stacks		...	358
A. The	Canonical	Stack		..	362
B. Tensions	Within	the	Stack		...	368
C. Recapitulating	the	Canons:	Quoine	and	Non-Public		

Scripts		...	385
IV.		The	Future	of	the	Contract	Stack		...	386

†	 	 Ph.D.,	 Postdoctoral	 Research	Associate,	 Center	 for	 Information	Technology	
Policy,	Princeton	University.	Copyright	©	2020	by	Shaanan	Cohney.	

††	 	Professor	of	Law,	University	of	Pennsylvania	Law	School.	We	thank	Alexander	
Altieri	 and	Chrissy	Pak	 for	 research	assistance,	 and	Yonathan	Arbel,	Bridget	Fahey,	
James	 Grimmelmann,	 Greg	 Klass,	 Raina	 Haque,	 Bob	 Hillman,	 Drew	 Hinkes,	 Cathy	
Hwang,	Gabe	Kaptchuk,	Max	Raskin,	Elizabeth	Pollman,	Gabe	Shapiro,	Jeremy	Sklaroff,	
Tim	Swanson,	Andrea	Tosato,	Alec	Webley,	Kevin	Werbach,	Tal	Zarsky,	Eyal	Zamir,	and	
participants	at	workshops	at	Alabama,	Penn,	and	Utah	for	comments.	This	work	was	
supported	in	part	by	grants	from	the	Ripple	Research	Fund	at	the	Wharton	School	and	
at	the	Princeton	Center	for	IT	Policy.	Copyright	©	2020	by	David	A.	Hoffman.	

320	 MINNESOTA	LAW	REVIEW	 [105:319	

	

		INTRODUCTION			
In	early	2019,	a	group	of	people	founded	Edgeware,	a	blockchain-

based	 platform	designed	 to	 host	 software	 development.1	Edgeware	
made	potential	users	a	deal:	if	they	agreed	to	temporarily	sequester	
some	cryptocurrency	(essentially,	placing	an	initial	investment	in	es-
crow),	they’d	gain	governance	rights	over	the	platform	at	a	later	date.2	
The	mechanism	for	that	investment	was	a	piece	of	carefully-audited	
software,	 called	 “Lockdrop,”	which	was	 deployed	 on	 a	 blockchain.3	
Lockdrop	seemed	to	embody	and	constitute	a	novel	contracting	tech-
nology,	written	in	a	programming	language	(Solidity)	that	didn’t	even	
exist	a	decade	ago.4	

By	July	of	2019,	investors	committed	nearly	$300,000,000	to	the	
project	using	Lockdrop.5	Then	someone	looked	with	particular	care	at	
the	following	piece	of	code:6		

	
assert(address(lockAddr).balance	==	msg.value);	
	
As	it	turns	out,	this	line	was	susceptible	to	a	software	hack	that	

would	have	permanently	impounded	investor	assets.7	Luckily,	the	er-
ror	was	discovered	before	it	caused	harm.	But,	as	the	coder	who	dis-
covered	the	vulnerability	put	it,	“smart	contracts	are	software.	Even	
carefully	audited,	well	 tested	 software	will	 (almost	always)	 contain	
bugs.	Therefore,	and	despite	our	best	efforts	.	.	.	Smart	contracts	will	

	 1.	 COMMONWEALTH	LABS,	EDGEWARE:	AN	ADAPTIVE	SMART-CONTRACT	BLOCKCHAIN	1	
(2019)	[hereinafter	EDGEWARE	WHITEPAPER],	https://arena-attachments.s3	
.amazonaws.com/3850782/1928e31873075de95992d4987eb14a2e.pdf?15524	
32633	[https://perma.cc/J3GP-ERC4].	
	 2.	 See	id.	at	5	(“EDG	entitles	holders	both	staking	and	voting	rights”).	For	an	
introduction	to	cryptocurrencies,	see	Shaanan	Cohney,	David	Hoffman,	Jeremy	Sklaroff	
&	David	Wishnick,	Coin-Operated	Capitalism,	119	COLUM.	L.	REV.	591,	603–05	(2019).	
See	also	DAVID	FOX	&	SARAH	GREEN,	CRYPTOCURRENCIES	IN	PUBLIC	AND	PRIVATE	LAW	(2019).	
	 3.	 Certificate	 of	 Smart	 Contract	Audit	 for	 Edge-Lockdrop,	QUANTSTAMP	 (Apr.	 8,	
2019),	 https://arena-attachments.s3.amazonaws.com/4282493/a155dc84aa1dfba4	
cfd3dc6be1e1ebdc.pdf?1557965252	[https://perma.cc/UPC5-ZUPT].	
	 4.	 Id.	(noting	that	Lockdrop	used	Solidity	programming	language).	
	 5.	 Neil	McLaren,	Gridlock	(A	Smart	Contract	Bug),	MEDIUM	(July	1,	2019),	https://	
medium.com/@nmcl/gridlock-a-smart-contract-bug-73b8310608a9	 [https://perma	
.cc/V2G2-WT9L]	(“Edgeware’s	Lockdrop	smart	contract	has	processed	over	$900	mil-
lion	of	ETH	and	locked	up	over	$290	million.”).	
	 6.	 Id.	
	 7.	 If	the	attacker	designated	cryptocurrency	to	the	next	lock	address,	the	total	
balance	would	exceed	 the	amount	 sent	by	Lockdrop,	 causing	 the	 check	 to	 fail.	This	
would	freeze	the	sequestering	process	permanently	in	place.	

2020]	 TRANSACTIONAL	SCRIPTS	 321	

	

(almost	always)	contain	bugs!”8	The	question	we	ask	in	this	paper	is	
simple:	can	contract	 law	make	sense	of	 intractable	bugs	 in	 transac-
tional	code?	The	answer	is	likewise	simple:	yes.	

But	to	their	promoters,	even	buggy	“smart	contracts”	like	Lock-
drop	are	the	vanguard	of	a	revolution,	heralding	an	age	in	which	code	
will	depose	both	contract	theory	and	practice.9	Enthusiasts	argue	that	
when	 contracts	 are	 embodied	 and	 performed	 by	 code,	 contracting	
costs	(like	negotiation,	monitoring,	and	performance)	will	fall.	Better	
still,	parties	won’t	need	to	trust	each	other,	or	courts,	to	be	assured	
that	they’ll	get	what	they	bargained	for.	The	result:	“smart	contracts”	
are	offered	as	a	potential	solution	to	an	astounding	variety	of	business	
and	social	problems.	They	may	transform	insurance,10	financial	deriv-
atives,11	consumer	protection,12	corporate	governance,13	tax	 filing,14	
voting, 15 	supply	 chain	 management, 16 	bankruptcy, 17 	property	

	 8.	 McLaren,	supra	note	5.	
	 9.	 Cf.	Primavera	De	Filippi	&	Samer	Hassan,	Blockchain	Technology	as	a	Regula-
tory	Technology:	From	Code	Is	Law	to	Law	Is	Code,	FIRST	MONDAY	(Dec.	5,	2016),	https://	
firstmonday.org/ojs/index.php/fm/article/view/7113/5657	[https://perma.cc/	
2PX9-8C4K]	 (“What	makes	 the	blockchain	different	 from	other	 technologies	 is	 that	
smart	contracts	are	actually	meant	to	replace	legal	contracts.”);	Mark	Verstraete,	The	
Stakes	of	Smart	Contracts,	50	LOY.	U.	CHI.	L.J.	743,	743	(2019)	(“The	most	ardent	sup-
porters	of	smart	contracts	.	.	.	claim	that	smart	contracts	might	replace	large	swaths	of	
the	traditional	contract	system.”).	
	 10.	 Smart	Contracts:	10	Use	Cases	for	Business,	AMBISAFE,	https://ambisafe.com/	
blog/smart-contracts-10-use-cases-business	[https://perma.cc/S9WA-FHMM].	
	 11.	 See	generally	INT’L	SWAPS	&	DERIVATIVES	ASS’N,	LEGAL	GUIDELINES	FOR	SMART	DE-
RIVATIVES	 CONTRACTS:	 INTRODUCTION	 (2019),	 https://www.isda.org/a/MhgME/Legal-
Guidelines-for-Smart-Derivatives-Contracts-Introduction.pdf	[https://perma.cc/	
N5XN-J5KQ].	
	 12.	 See	 generally	 Joshua	 Fairfield,	Smart	 Contracts,	 Bitcoin	 Bots,	 and	 Consumer	
Protection,	71	WASH.	&	LEE	L.	REV.	ONLINE	35	(2014).	
	 13.	 Fiammetta	S.	Piazza,	Bitcoin	and	the	Blockchain	as	Possible	Corporate	Govern-
ance	Tools:	Strengths	and	Weaknesses,	5	PA.	ST.	J.L.	&	INT’L	AFFS.	262,	282–86	(2017).	
	 14.	 Valentine	P.	Vishnevsky	&	Viktoriia	D.	Chekina,	Robot	vs.	Tax	Inspector	or	How	
the	Fourth	Industrial	Revolution	Will	Change	the	Tax	System:	A	Review	of	Problems	and	
Solutions,	4	J.	TAX	REFORM	6,	20	(2018).	
	 15.	 See	Tsui	S.	Ng,	Blockchain	and	Beyond:	Smart	Contracts,	A.B.A.	BUS.	L.	TODAY	
(Sept.	28,	2017),	https://www.americanbar.org/groups/business_law/publications/	
blt/2017/09/09_ng	 [https://perma.cc/MD66-A7V4]	 (“Governments	may	 use	 smart	
contracts	to	manage	.	.	.	e-voting.”).	
	 16.	 See	generally	Horst	Treiblmaier,	The	Impact	of	the	Blockchain	on	the	Supply	
Chain:	 A	 Theory-Based	 Research	 Framework	 and	 a	 Call	 for	 Action,	 23	 SUPPLY	CHAIN	
MGMT.	INT’L	J.	545	(2018).	
	 17.	 See	generally	Alan	Rosenberg,	Automatic	Contracts	and	the	Automatic	Stay:	A	
Primer	on	“Smart	Contracts”	in	Bankruptcy,	38	AM.	BANKR.	INST.	J.	18	(2019).	

322	 MINNESOTA	LAW	REVIEW	 [105:319	

	

rights,18	and	repossession	through	the	internet	of	things.19	But	there’s	
more.	Jurisprudence—in	the	sense	of	the	fundamental	utility	of	con-
tract	doctrine—is	on	the	chopping	block.20	For	many,	smart	contracts	
are	the	first	transformative	legal	innovation	of	the	millennium.21	

Perhaps	 inevitably,	 “smart	 contracts,”	 a	 term	 that	 connotes	
money,	 computers,	 and	modernity,	 has	 invited	 a	 stampede	 of	 com-
mentators	to	speculate	about	a	wide	variety	of	possible	contracting	
technologies.22	Many	marvel	at	the	innovation	as	some	kind	of	utopian	
simulacra: 23 	an	 immutable, 24 	transparent	 exchange, 25 	occurring	

	 18.	 See,	e.g.,	Michael	Casey,	Could	Blockchain	Technology	Help	the	World’s	Poor?,	
WORLD	ECON.	F.	AGENDA	(Mar.	9,	2016),	https://www.weforum.org/agenda/2016/03/	
could-blockchain-technology-help-the-worlds-poor	[https://perma.cc/4U9N-4S2F].	
	 19.	 For	the	canonical	description,	see	Jeremy	M.	Sklaroff,	Comment,	Smart	Con-
tracts	and	the	Cost	of	Inflexibility,	166	U.	PA.	L.	REV.	263,	271–78	(2017).	
	 20.	 For	a	 lucid	review,	see	generally	Marco	Dell’Erba,	Demystifying	Technology:	
Do	Smart	Contracts	Require	a	New	Legal	Framework?	Regulatory	Fragmentation,	Self-
Regulation,	Public	Regulation,	U.	PA.	J.L.	&	PUB.	AFFS.	(forthcoming	2020),	https://pa-
pers.ssrn.com/sol3/papers.cfm?abstract_id=3228445	[https://perma.cc./48NP	
-CWX7].	
	 21.	 See,	e.g.,	Alexander	Savelyev,	Contract	Law	2.0:	“Smart”	Contracts	as	the	Begin-
ning	of	the	End	of	Classic	Contract	Law,	26	INFO.	&	COMMC’N	TECH.	L.	116	(2017);	see	also	
What	is	Ethereum?,	ETHERSCRIPTER,	https://etherscripter.com/what_is_ethereum.html	
[https://perma.cc/LV8P-6BJD]	 (describing	 popular	 smart	 contract	 Ethereum	 as	 “a	
new	kind	of	law”	that	can	be	“perfectly	observed	and	enforced”).	
	 22.	 The	fish	rots	from	the	head.	See	NICK	SZABO,	SMART	CONTRACTS:	BUILDING	BLOCKS	
FOR	 DIGITAL	 MARKETS	 1	 (1996),	 http://www.truevaluemetrics.org/DBpdfs/Block-
Chain/Nick-Szabo-Smart-Contracts-Building-Blocks-for-Digital-Markets-1996-14591	
.pdf	 [https://perma.cc/6BAR-V45A]	(defining	smart	contracts	as	“a	set	of	promises,	
specified	in	digital	form,	including	protocols	within	which	the	parties	perform	on	these	
promises”).	In	recent	years,	Szabo	has	vociferously	defended	the	term.	See,	e.g.,	Nick	
Szabo	 (@NickSzabo4),	 TWITTER	 (Oct.	 14,	 2018,	 6:38	 PM),	 https://twitter.com/	
NickSzabo4/status/1051603179526270976	[https://perma.cc/5HC7-D95Z]	(“‘Smart	
contract’	is	a	very	useful	concept	&	phrase.	‘Smart’	as	in	‘smart	phone’	(shorthand	for	
computerized	phone),	‘contract’	meaning	it	does	some	important	things	we	previously	
relied	on	contracts	to	do	for	our	deals,	especially	controlling	assets	&	incentivizing	per-
formance.”).	
	 23.	 Frank	Pasquale,	A	Rule	of	Persons,	Not	Machines:	The	Limits	of	Legal	Automa-
tion,	87	GEO.	WASH.	L.	REV.	1,	24–25	(2019).	
	 24.	 Jeffrey	M.	Lipshaw,	The	Persistence	of	“Dumb”	Contracts,	2	STAN.	J.	BLOCKCHAIN	
L.	&	POL’Y	1,	24	(2019)	(stating	that	the	key	characteristics	of	smart	contracts,	“in	ad-
dition	to	consensus,	include	immutability	and	finality	from	the	time	they	are	created	
and	going	forward”).	
	 25.	 Adam	J.	Kolber,	Not-So-Smart	Blockchain	Contracts	and	Artificial	Responsibil-
ity,	21	STAN.	TECH.	L.	REV.	198,	208	(2018)	(“Since	Ethereum	smart	contracts	consist	of	
particular	computer	code	on	a	decentralized	blockchain,	it	is	easy	to	verify	program	
execution.”).	

2020]	 TRANSACTIONAL	SCRIPTS	 323	

	

through	“consensus,”	that	is	“self-executing”26	or	“automated.”27	With	
that	capacious	definition	in	mind,	is	the	chip	in	your	Visa	Card	part	of	
a	smart	contract	network?	The	code	comprising	the	Venmo	App?	Your	
Metrocard?28	If	we	can’t	understand	 the	scope	of	 this	phenomenon,	
how	can	we	fairly	evaluate	the	risk	it	poses,	or	the	benefits	it	promises,	
to	our	commercial	and	social	life?	

Smart	contracts’	flabby	meaning	is	not	this	Article’s	precise	tar-
get.29	Rather	we	offer	a	focused	description	of	the	most	celebrated	as-
pect	of	the	underlying	technology	and	its	relationship	to	legal	order.	
We’ll	 start	by	 introducing	 a	new	 term	 that	we	 think	 captures	what	
most	people	in	this	field	think	of	when	they	consider	“smart	contracts”	
as	 they	are	currently	deployed.	We	name	and	describe	 the	 transac-
tional	 script.30	Here	 is	 a	 parsimonious	 definition	 (that	we’ll	 unpack	
later):31	

A	transactional	script	is	a	persistent	piece	of	software	residing	on	
a	public	blockchain.	When	executed	as	a	part	of	an	exchange,	the	code	
effectuates	a	consensus	change	to	the	state	of	a	ledger.	

	 26.	 Professors	Kevin	Werbach	and	Nicolas	Cornell	argue	that	smart	contracts	are	
distinctive	because	“juridical	forums	are	powerless	to	stop	the	execution	of	smart	con-
tracts—there	 is	no	 room	 to	bring	an	action	 for	breach	when	breach	 is	 impossible.”	
Kevin	Werbach	&	Nicolas	Cornell,	Contracts	Ex	Machina,	67	DUKE	L.J.	313,	332	(2017);	
see	also	Amy	 J.	 Schmitz	&	Colin	Rule,	Online	Dispute	Resolution	 for	 Smart	Contracts,	
2019	J.	DISP.	RESOL.	103,	106,	107,	113	(describing	smart	contracts	as	“self-enforcing,”	
“self-governing,”	and	with	“no	ambiguity	around	the	parties’	obligations”).	
	 27.	 Christopher	D.	 Clack,	Vikram	A.	 Bakshi	&	 Lee	Braine,	 Smart	 Contract	 Tem-
plates:	Foundations,	Design	Landscape	and	Research	Directions	2	(Mar.	15,	2017)	(un-
published	manuscript),	ARXIV:	1608.00771;	see	also	Max	Raskin,	The	Law	and	Legality	
of	Smart	Contracts,	1	GEO.	L.	TECH.	REV.	305,	309	(2017)	(“A	smart	contract	is	an	agree-
ment	whose	execution	is	automated.”).	
	 28.	 See	Kolber,	supra	note	25.	
	 29.	 Cf.	 Ed	 Felten,	 Smart	 Contracts:	 Neither	 Smart	 nor	 Contracts?,	 FREEDOM	 TO	
TINKER	(Feb.	20,	2017),	https://freedom-to-tinker.com/2017/02/20/smart-contracts	
-neither-smart-not-contracts	[https://perma.cc/NZ2Q-GFHE].	
	 30.	 For	a	definition	of	smart	contracts	that	tracks	with	our	transactional	script,	
see	 Carla	 L.	 Reyes,	 If	 Rockefeller	Were	 a	 Coder,	 87	 GEO.	WASH.	L.	REV.	 373,	 383–84	
(2019),	which	states	that:		

The	term	“smart	contract”	refers	to	decentralized	computer	code	that	runs	
on	a	DLT	protocol	and	manifests	some	combination	of	the	following	charac-
teristics:	exerts	some	control	over	assets	digitally	recorded	on	a	DLT	proto-
col,	takes	some	action	upon	receipt	of	specified	data,	is	often,	but	not	always,	
part	of	a	DLT-based	application,	guarantees	execution,	and	writes	the	result-
ing	 state	 change	 from	 the	 operation	 of	 the	 smart	 contract	 into	 the	 DLT’s	
ledger.	

	 31.	 Cf.	Peter	G.L.	Hunn,	Smart	Contracts	as	Techno-Legal	Regulation,	7	J.	ICT	STAND-
ARDIZATION	269,	275	(2019)	(focusing	on	“a	deterministic	state	machine”	and	a	“con-
sensus	protocol”	that	provides	agreement	“on	the	same	sequence	of	operations”).	

324	 MINNESOTA	LAW	REVIEW	 [105:319	

	

We	stress	that	our	focus—for	the	moment—is	narrower	than	all	
digitized	exchanges,32	or	even	all	deals	accomplished	through	block-
chain-style	ledgers.33	That	is,	transactional	scripts	sit	at	the	core	of	the	
rapidly	expanding	group	of	things	called	“smart	contracts,”	but	do	not	
encompass	 the	 whole	 field.	 Crucially,	 transactional	 scripts	 are	 ex-
changes	that	operate	in	public—indeed,	they	are	valuable	in	large	part	
because	their	resolution	must	be	agreed	to	by	multiple	different	enti-
ties,	jointly	operating	on	an	operating	system	with	fixed	and	translu-
cent	rules.	

Transactional	scripts	are	a	striking	legal	innovation	and	much	of	
the	current	interest	in	smart	contracts	in	fact	regards	them.34	But	law	
(and	lawyers’)	role	in	the	creation	and	execution	of	scripts	is	unclear.	
Even	 apart	 from	 the	 performative	 techno-libertarian	 claims	 about	
law’s	abnegation,	many	scripting	projects	are	missing	many	of	the	ac-
coutrements	 of	 transactional	 law.	 More	 plainly	 put,	 currently	 de-
ployed	transactional	scripts—those	that	are	exposing	real	people	to	
financial	and	personal	risks—often	rely	on	the	code	alone	as	their	pri-
mary	risk-allocation	mechanism.	And	the	code	errs.	

In	the	Edgeware	project,	none	of	the	governance	promises	were	
expressed	 in	 a	 natural	 language	 “contract”	 as	 we	 understand	 that	
term,	even	in	the	digital	sphere,	as	 in	a	click-wrap	agreement.	They	
existed	rather	in	a	“white	paper”—a	self-published	document	with	no	

	 32.	 For	a	tremendous	survey	of	digitized	exchanges,	see	Harry	Surden,	Computa-
ble	Contracts,	46	U.C.	DAVIS	L.	REV.	629	(2012).	Surden	discusses	“autonomous	comput-
able	contracting”	only	briefly.	Id.	at	694–95.	
	 33.	 The	 reader	 would	 benefit	 from	 reading	 the	 following	 excellent	 works	 on	
scripts	 (broadly	 defined):	 Sklaroff,	 supra	 note	 19;	 J.G.	 Allen,	Wrapped	 and	 Stacked:	
“Smart	Contracts”	and	the	 Interaction	of	Natural	and	Formal	Language,	14	EUR.	REV.	
CONT.	L.	307	(2018);	Werbach	&	Cornell,	supra	note	26;	Karen	E.C.	Levy,	Book-Smart,	
Not	Street-Smart:	Blockchain-Based	Smart	Contracts	and	the	Social	Workings	of	Law,	3	
ENGAGING	SCI.	TECH.	&	SOC’Y	1	(2017);	James	Grimmelmann,	All	Smart	Contracts	Are	Am-
biguous,	2	 J.L.	&	INNOVATION	1	 (2019);	PRIMAVERA	DE	FILIPPI	&	AARON	WRIGHT,	BLOCK-
CHAIN	AND	THE	LAW:	THE	RULE	OF	CODE	(2018);	Jonathan	Rohr,	Smart	Contracts	in	Tradi-
tional	Contract	Law,	or:	The	Law	of	the	Vending	Machine,	67	CLEV.	ST.	L.	REV.	67	(2019);	
Edmund	Schuster,	Cloud	Crypto	Land,	MOD.	L.	REV.	(forthcoming	2020)	(manuscript	at	
23–25),	https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3476678	[http://	
perma.cc/YAY3-TA63].	
	 34.	 See	Global	Smart	Contracts	Market,	MKT.	RSCH.	FUTURE,	https://www.market-
researchfuture.com/reports/smart-contracts-market-4588	[https://perma.cc/F3DN-
L98D]	(“The	global	smart	contracts	market	 is	expected	 to	reach	approximately	300	
USD	Million	by	the	end	of	2023”);	cf.	Venture	Capital	Firms	Go	Deep	and	Wide	with	
Blockchain	 Investments,	 DIAR	 (Oct.	 1,	 2018),	 https://diar.co/volume-2-issue-39	
[https://perma.cc/V6Q2-ZLVR]	(“[I]n	just	.	.	.	three	quarters	of	2018,	blockchain	and	
crypto	 companies	 have	 raised	 nearly	 3.9Bn	 through	 traditional	 VC—280%	 more	
[than]	last	year”).	

2020]	 TRANSACTIONAL	SCRIPTS	 325	

	

standard	form	and	untested	legal	effect.35	That	white	paper	states	that	
users	will	receive	“[d]ownside	protection”	in	the	case	of	a	“malicious	
attack	 or	 exploit,”	 and	describes	 the	 lockdrop	 contract	 as	 a	 failsafe	
technique.36	Moreover,	the	promoters	suggest	that	it	would	be	impos-
sible	 to	 falsely	 claim	 ownership	 for	 an	 address.37 	Needless	 to	 say,	
these	representations	do	not	match	the	reality	of	what	the	buggy	code	
delivered.	But,	equally	obviously,	since	the	code	was	public,	its	latent	
errors	 were	 also	 theoretically	 knowable,	 at	 least	 to	 sophisticated	
counterparties.	

Other	examples	of	coding	errors	and	oversights	abound—includ-
ing	the	now	infamous	DAO	hack,	which	we	will	discuss	later.38	In	many	
cases,	the	losers	of	coding	errors	have	paid	off	the	winners	to	undo	
transactions.39	Such	settlements	occur	in	the	very	indistinct	shadow	
of	law:	there	isn’t	a	body	of	cases	that	directly	address	the	question	of	
what	happens	when	transactional	scripts	go	wrong.40	The	academic	
literature	too	has	largely	downplayed	the	role	and	capabilities	of	law	
in	resolving	transactional	scripts	gone	wrong.41		

Even	the	most	sophisticated	treatments	in	the	literature	largely	
focus	 on	 what	 happens	 when	 scripts	 accomplish	 their	 promised	
aims.42	Some	argue	that	the	technology	is	simply	incapable	of	the	sorts	

	 35.	 EDGEWARE	WHITEPAPER,	supra	note	1,	at	9–15.	
	 36.	 Id.	at	6–7.	
	 37.	 Id.	at	11–12	(“Upon	inspection	[of	the	transaction	hash],	a	verifier	should	have	
enough	proof	that	if	the	owner	of	the	.	.	.	account	did	not	also	own	the	recipient	Edge-
ware	account	(represented	as	the	target	address	.	.	.),	then	they	would	not	issue	such	
a	transaction.”).	
	 38.	 See	infra	text	accompanying	notes	276–79.	
	 39.	 The	 literature	has	noted	 that	often	 firms	price	bug	bounties	 too	 low	when	
compared	with	their	after-market	(and	illegitimate)	use.	Lorenz	Breidenbach,	Philip	
Daian,	Florian	Tramer	&	Ari	Juels,	Enter	the	Hydra:	Towards	Principled	Bug	Bounties	
and	Exploit-Resistant	Smart	Contracts,	27	PROC.	USENIX	SEC.	SYMP.	1335,	1335	(2018).	
It	 is	difficult	to	know	how	common	self-help	is	 in	the	world	of	transactional	scripts.	
Victims	have	little	incentive	to	publicize	their	failure	to	write	better	code,	while	suc-
cessful	attackers	may	wish	to	avoid	public	renown	(if	not	the	tax	authorities).	
	 40.	 See,	 e.g.,	 Lauren	Henry	Scholz,	Algorithmic	Contracts,	 20	STAN.	TECH.	L.	REV.	
128,	141	(2017)	(discussing	the	application	of	contract	and	agency	law	to	algorithmic	
contracts	and	noting	lack	of	caselaw).	
	 41.	 Cf.	Dell’Erba,	supra	note	20	(manuscript	at	21)	(“It	could	be	that	there	may	be	
a	bug	in	the	code	or	that	the	parties	may	reconsider	what	they	want.”).	
	 42.	 Compare	Werbach	&	Cornell,	 supra	note	26,	at	350–64	(things	going	well),	
with	id.	at	365–67	(not	as	well).	

326	 MINNESOTA	LAW	REVIEW	 [105:319	

	

of	error	that	law	cares	about:	the	“[c]ode	typically	entails	no	ambigu-
ity,	and	no	variant	interpretation	is	possible.”43	Others	lament	that	be-
cause	the	blockchain	code	is	self-contained,	it	contains	no	place	within	
it	for	“default	law”	to	exist.44	Worse,	even	if	there	are	places	for	law’s	
tools	to	have	purchase,	jurists	“may	not	be	able	to	hypothesize	a	rea-
sonable	human’s	interpretation	of	a	given	smart	contract.”45	

Such	handwaving	is	an	unwarranted,	and	ultimately	unworkable,	
surrender	of	the	law’s	role	in	adjudicating	disputes.	Code	that	embod-
ies	 commercially-significant	 scripts	will	 inevitably	 contain	ambigui-
ties,	and	disappointed	parties	will	ask	judges	to	adjudicate	their	rights.	
At	the	basic	level,	as	James	Grimmelmann	has	recently	observed,	the	
“meaning	of	any	specific	program	rests	on	a	foundation	of	some	prior	
agreement	about	how	to	interpret	some	larger	class	of	programs.”46	
He	concludes	that	while	there	may	be	fewer	superficial	examples	of	
interpretative	gaps	in	formal	code,	“when	the	bottom	drops	out,	it	can	
really	drop	out.”47	It’s	then	that	law	will	be	asked	to	step	in	and	pro-
vide	rational	and	predictable	solutions,	which	will	almost	certainly	be	
developed	by	analogy	to	off-chain	exchanges.	

But	analogies	can	deceive.	Whereas	scholars	and	jurists	who	con-
front	questions	about	ordinary	written	contracts	have	a	deep	working	
knowledge	of	how	such	exchanges	function,	transactional	scripts	are	
functionally	innovative	and	the	legal	community	has	yet	to	coalesce	
around	even	a	basic	understanding	of	what	they	are,	 let	alone	what	
they	do.	What’s	needed,	then,	is	a	working	knowledge	of	the	ways	in	
which	the	vocabulary	and	functioning	of	the	code	itself	can	create	dis-
connects	 between	 the	 intent	 of	 the	 humans	 coding	 transactional	
scripts	 and	 the	 code’s	 function.48	Describing	 the	 plumbing	 of	 these	
phenomena	is	the	first	contribution	of	this	Article,	and	occupies	Part	
I.	We	make	two	fundamental	observations.		

	 43.	 Wulf	A.	Kaal	&	Craig	Calcaterra,	Crypto	Transaction	Dispute	Resolution,	73	BUS.	
LAW.	109,	136	n.94	(2017–2018).	
	 44.	 Usha	R.	Rodrigues,	Law	and	the	Blockchain,	104	IOWA	L.	REV.	679,	682	(2019)	
(“Because	the	smart	‘contract’	is	code	alone,	there	is	no	gap,	in	the	sense	of	an	entry	
point,	for	the	law	to	step	in	to	fill.”).	
	 45.	 Kaal	&	Calcaterra,	supra	note	43,	at	136;	Schmitz	&	Rule,	supra	note	26,	at	103	
(“Those	with	 no	 coding	 background	 cannot	 easily	 interpret	 a	 smart	 contract	 in	 its	
rawest	form.”).	
	 46.	 Grimmelmann,	supra	note	33,	at	12.	
	 47.	 Id.	at	20	(“The	relevant	community	can	redefine	the	programming	language	
in	a	way	that	radically	alters	the	meaning	of	programs	written	in	it.”).	
	 48.	 On	the	problems	caused	by	blockchain	jargon,	see	Angela	Walch,	Blockchain’s	
Treacherous	Vocabulary:	One	More	Challenge	for	Regulators,	J.	INTERNET	L.,	Aug.	2017,	
at	1.	

2020]	 TRANSACTIONAL	SCRIPTS	 327	

	

First,	the	software	language	development	environment	of	almost	
all	extant	 transactional	scripts	has	 features	 (and	entails	uncommon	
practices)	which	make	coding	errors,	and	gaps	between	coders’	intent	
and	expression,	both	likely	to	occur	and	difficult	to	resolve.49	Second,	
the	 dominant	 platform	 for	 scripts—Ethereum—assesses	 a	 tax	 on	
complex	programs.	This	fee	makes	transactional	scripts	unsuited	for	
many	knotty	contracting	problems,	unless	their	drafters	make	parts	
of	the	code	non-public,	thus	stripping	scripts	of	much	of	what	makes	
them	an	elegant	solution	to	problems	of	trust	in	exchange.	

With	a	better	grasp	of	how	scripts	operate,	Part	II	uses	case	ex-
amples	 to	 argue—contrary	 to	 the	 dominant	 account—that	 these	
scripts	 fail	 in	ways	that	are	 legible	to	traditional	contractual	 frame-
works.	Put	simply,	they	fail	to	accomplish	their	parties’	intent.	Those	
examples	start	with	“tokens”	issued	in	“initial	coin	offerings,”	continue	
with	decentralized	exchanges,	and	finally	consider	so-called	“oracles.”	
We	describe	both	the	coded	and	natural	language	promises	accompa-
nying	 these	projects.	Each	such	category	of	 transactional	 script	has	
been	 touted	 as	 a	 revolutionary	 financial	 innovation.	 Each,	 as	 we’ll	
show,	have	already	produced	errors	with	real	legal	consequences.		

In	Part	III,	we	ask	how	law	ought	to	respond	to	the	sorts	of	prob-
lems	occasioned	by	such	systematic	failures	of	transactional	scripts.	
We	 argue	 that	 the	 layering	 of	 transactional	 script	 and	 natural	 lan-
guage	promise	is	best	understood	as	producing	a	contract	stack.	Con-
tract	stacks	are	inevitable	when	parties	come	together	to	accomplish	
commercial	ends,	even	if	they	try	their	hardest	to	make	the	code	the	
final	 answer	 to	 all	 their	 problems.	 Collecting	 the	 meager	 extant	
caselaw,	and	deploying	old	fashioned	rules	of	interpretation,	we	offer	
a	novel	framework	through	which	courts	ought	to	compile	such	stacks	
and	thus	make	sense	of	these	new	forms	of	commercial	exchange.		

The	framework	we	offer,	though	focused	on	the	scripted	ecosys-
tem	of	the	moment,	has	general	application.	Future	iterations	of	digit-
ized	 transactions,	whether	using	blockchain	or	 other	 forms	of	 soft-
ware,	 will	 require	 courts	 to	 make	 sense	 of	 gaps	 between	 natural	
language	 promises	 and	 coded	 executions.	 Our	 approach	 brings	 old	
principles	of	common	law	to	bear	on	the	problems	that	the	next	gen-
eration	of	contract	practitioners	and	academics	will	face.	

	 49.	 See	Elaine	Ou,	Blockchain	Is	Littered	with	‘Smart’	Contracts	Gone	Bad:	Opinion,	
INS.	 J.	 (Nov.	 16,	 2017),	 https://www.insurancejournal.com/news/international/	
2017/11/16/471387.htm	[https://perma.cc/P5MF-67N3].	

328	 MINNESOTA	LAW	REVIEW	 [105:319	

	

I.		DESIGNING	EXPENSIVE,	BUGGY	SCRIPTS			
We	begin	with	a	precise	account	of	the	creation	and	function	of	

transactional	scripts.	To	the	extent	that	the	discussion	requires	strug-
gling	with	new	jargon,	our	petard	has	been	well-hoisted.50	Our	goal	is	
not	merely	to	demystify	this	technology,	but	also	the	world	and	social	
practices	of	coders	whose	work	increasingly	matters	to	law	and	trans-
actional	practice.	We	make	two	primary	contributions.	First,	we	try	to	
explain	why	code	is	intrinsically	buggy.	Second,	we	offer	some	reasons	
to	 be	 skeptical	 about	 scripts’	 innate	 ability	 to	 simultaneously	 solve	
problems	of	trust,	complexity	and	automation	of	deals.	

	We	 start	with	 the	 functional	 question	of	how	coders	 go	 about	
their	work.	

A. HOW	(COMMERCIAL)	CODING	WORKS	
The	process	of	taking	a	programmer’s	intent	from	code	to	execu-

tion	involves	multiple	steps,	each	of	which	can	and	does	introduce	er-
ror.	Just	as	when	law	firms	draft	contracts,	programming	progresses	
in	 pieces	 and	 through	 teams. 51 	Programming	 teams	 typically	 start	
with	a	human-driven	goal.	They	then	choose	a	language	in	which	to	
code.	Typically,	coders	will	choose	a	high-level	language	that	abstracts	
away	the	details	of	the	machine’s	hardware	and	allows	programming	
in	syntax	closer	to	natural	language.	

Transactional	 scripts	 are	 commonly	 coded	 in	 Solidity,	 the	 lan-
guage	conceived	alongside	of,	and	for	use	on,	Ethereum,	the	platform	
on	which	most	scripts	operate.52	It	is	syntactically	similar	to	the	pop-
ular,	web-development	language,	Javascript	and	thus	looks	familiar	to	
many	non-smart-contract	coders.	To	create	a	transactional	script	 in	
Solidity,	a	coder	creates	a	text	file	with	contents	that	conform	to	the	
publicly	available	specification	of	the	Solidity	language,	and	that	cap-
ture	in	programmatic	form	the	design	goal.53	

	 50.	 Cf.	ELIZABETH	MERTZ,	THE	LANGUAGE	OF	LAW	SCHOOL:	LEARNING	TO	“THINK	LIKE	A	
LAWYER”	(2007)	(providing	the	classic	text	on	how	law	students	are	taught	to	think	and	
argue	in	distinctive	ways).	
	 51.	 On	“flexible	standardization”	and	the	production	of	contracts	in	law	firms,	see	
Matthew	Jennejohn,	The	Architecture	of	Contract	Innovation,	59	B.C.	L.	REV.	71	(2018).	
	 52.	 For	a	good	overview	of	 the	coding	ecosystem,	 see	Raina	S.	Haque,	Rodrigo	
Seira	Silva-Herzog,	Brent	A.	Plummer	&	Nelson	M.	Rosario,	Blockchain	Development	
and	Fiduciary	Duty,	2	STAN.	J.	BLOCKCHAIN	L.	&	POL’Y	1,	16–17	(2019).	
	 53.	 For	more	on	the	process	of	open	source	development	in	blockchain	generally,	
see	Angela	Walch,	Open-Source	Operational	Risk:	Should	Public	Blockchains	Serve	as	Fi-
nancial	Market	Infrastructures?,	in	2	HANDBOOK	OF	BLOCKCHAIN,	DIGITAL	FINANCE,	AND	IN-
CLUSION	252–54	(David	Lee	Kuo	Chuen	&	Robert	Deng	eds.,	2017).	

2020]	 TRANSACTIONAL	SCRIPTS	 329	

	

Like	traditional	contract	drafters,	transactional	script	developers	
freely	 use	 boilerplate.	 A	 significant	 fraction	 of	 code	 in	 open	 source	
software	projects	 is	copied.54	This	practice	 is	also	prominent	within	
the	transactional	scripts	world,	with	one	study	finding	in	95%	of	im-
plementations	 that	performed	a	common	function,	coders	had	used	
identical	 syntax.55	Reusing	or	 retrofitting	 code	 for	new	ends	 serves	
multiple	purposes	for	developers.	Reuse	decreases	development	time	
and	may	provide	 ready-made,	 secure,	 and	 compatible	 solutions	 for	
difficult	coding	problems.	Code	reuse	can	also	cause	problems,	making	
developers	 reliant	 on	 code	 they	 may	 not	 understand,	 propagating	
bugs,	and	increasing	development	time	where	reused	code	is	difficult	
to	understand	or	adapt.56	

Knitting	together	these	pieces	of	boilerplate	with	bespoke	code	is	
an	 iterative	process,	and	programs	are	created	across	multiple	ses-
sions	consisting	of	coding	and	testing.	To	keep	track	of	changes,	and	
the	contributions	of	many	individuals,57	software	projects	use	version	
control	systems	that	themselves	capture	a	log	of	each	change.58	To	add	
a	change	to	a	version	control	system,	coders	are	typically	required	to	
explicitly	identify	the	change/s	they	wish	to	add,	describe	it	in	a	“com-
mit	message”	and	send	it	to	a	server	that	tracks	the	full	set	of	changes	
across	users.59	

	 54.	 Developers	report	a	mean	thirty	percent	of	functionality	is	derived	from	re-
used	code.	See	Manuel	Sojer	&	 Joachim	Henkel,	Code	Reuse	 in	Open	Source	Software	
Development:	Quantitative	Evidence,	Drivers,	and	Impediments,	11	J.	ASS’N	FOR	INFO.	SYS.	
868,	869	(2010).	
	 55.	 See	Yi	Zhou,	Deepak	Kumar,	Surya	Bakshi,	Joshua	Mason,	Andrew	Miller	&	Mi-
chael	Bailey,	Erays:	Reverse	Engineering	Ethereum’s	Opaque	Smart	Contracts,	27	PROC.	
USENIX	 SEC.	 SYMP.	 1371,	 1371	 (2018),	 https://www.usenix.org/system/files/	
conference/usenixsecurity18/sec18-zhou.pdf	[https://perma.cc/GJ94-S6F8].	
	 56.	 Ethereum	Smart	Contract	Best	Practices,	GITHUB,	https://consensys.github.io/	
smart-contract-best-practices/general_philosophy	[https://perma.cc/NS6T-MQ34]	
(“A	smart	contract	system	from	a	software	engineering	perspective	wishes	to	maxim-
ize	reuse	where	reasonable.”).	
	 57.	 Programmers	will	sometimes	pair	program:	a	reviewer	assesses	each	line	of	
code	as	the	primary	programmer	is	typing.	The	reviewer	suggests	changes,	spots	er-
rors	and	often	drives	the	strategic	direction	of	the	code.	See,	e.g.,	Laurie	Williams,	Rob-
ert	R.	Kessler,	Ward	Cunningham	&	Ron	Jeffries,	Strengthening	the	Case	for	Pair	Pro-
gramming,	IEEE	SOFTWARE,	July/August	2000,	at	19.	
	 58.	 Distributed	version	control	systems	have	much	in	common	with	blockchains.	
They	record	sequences	of	changes	to	a	common,	replicated	record	using	a	chained	hash	
structure	that	ties	together	each	new	change	with	the	complete	past	history.	They	do	
not	solve	consensus	problems,	relying	on	individuals	to	determine	the	outcome	of	con-
flicts.	
	 59.	 While	decentralized	version	control	systems	(DVCS)	such	as	git	can	in	theory	
operate	without	a	centralized	server,	the	convenience	of	a	host	that	is	always	online	

330	 MINNESOTA	LAW	REVIEW	 [105:319	

	

Figure	1:	A	well	written	commit	message	from	the	Bitcoin	core	repos-
itory	explaining	the	changes	made	and	the	reasoning	behind	them.60		
	
	 When	added	to	the	system,	the	set	of	changes	is	termed	a	“com-
mit.”	The	commit	log	generated	by	a	version	control	system	thus	con-
tains	evidence	of	the	drafting	process,	both	in	code	and	human	reada-
ble	form.	The	log	and	code	are	available	to	all	developers	on	a	project	
and	may	sometimes	be	stored	on	a	publicly	accessible	server.	

	Large	firms	enforce	discipline	over	this	commit	log	system:	com-
mit	messages	must	capture	the	intent	and	effect	of	a	change.	In	smaller	
development	 outfits,	 programmers	 often	 fail	 to	 include	meaningful	
commit	messages	and	the	log	may	thus	poorly	capture	intent.61		

Another	prominent	practice	common	to	well-disciplined	devel-
opment	 teams	 is	code	 review.	Before	a	 server	or	 team	will	 accept	a	
commit,	it	passes	through	human	review.	The	review	is	performed	by	
other	team	members,	who	comment	on	a	platform	integrated	with	the	

and	authoritative	ensures	that	most	deployments	use	such	a	server.	Common	commer-
cial	service	providers	of	these	servers	include	Github,	Gitlab,	and	Bitbucket.	
	 60.	 https://github.com/bitcoin/bitcoin/commit/eb0b56b19017ab5c16c745e6	
da39c53126924ed6.patch	[https://perma.cc/UL38-WEK3].	
	 61.	 Shortform	commit	messages	can	range	from	the	insightful,	“Simplify	serialize	
h’s	exception	handling,”	to	the	banal,	“fuck	fuck	holy	shit	fuck	I	think	I	finally	fixed	my	
shitty	git	fuck.”	Chris	Beams,	How	to	Write	a	Git	Commit	Message,	INCEPTION	INNOVATION,	
https://inceptioninnovation.com/blog/tutorial-5/post/how-to-write-a-git-commit	
-message-14	[https://perma.cc/3Z9G-CPFV];	Ramiro	Gómez,	Exploring	Expressions	of	
Emotions	 in	GitHub	Commit	Messages,	GEEKSTA	(May	10,	2012),	https://geeksta.net/	
geeklog/exploring-expressions-emotions-github-commit-messages/	 [https://perma	
.cc/NT3D-UPGT].	

commit eb0b56b19017ab5c16c745e6da39c53126924ed6
Author: Pieter Wuille <pieter.wuille@gmail.com>
Date: Fri Aug 1 22:57:55 2014 +0200

 Simplify serialize.h's exception handling

 Remove the 'state' and 'exceptmask' from serialize.h's stream
 implementations, as well as related methods.

 As exceptmask always included 'failbit', and setstate was always
 called with bits = failbit, all it did was immediately raise an
 exception. Get rid of those variables, and replace the setstate
 with direct exception throwing (which also removes some dead
 code).

 As a result, good() is never reached after a failure (there are
 only 2 calls, one of which is in tests), and can just be replaced
 by !eof().

 fail(), clear(n) and exceptions() are just never called. Delete
 them.

2020]	 TRANSACTIONAL	SCRIPTS	 331	

	

version	control	system.	The	reviewers	assess	all	elements	of	the	com-
mit—the	message,	 the	quality	of	 the	code	 implementing	the	change	
and	 the	 intent	of	 the	change—and	either	accept,	 reject,	or	send	 the	
commit	back	for	further	review.	

Once	a	program	is	ready	to	be	tested,	it	must	be	converted	from	
the	 high-level	 language	 to	machine	 instructions.	 The	 conversion	 is	
done	through	the	aid	of	a	compiler,	a	secondary	program	developed	
for	this	express	purpose.62	Compilers,	as	software	themselves,	are	im-
perfect.	Rarely,	they	contain	bugs	that	cause	a	mistranslation	from	the	
high-level	language	to	the	target	language,	further	obscuring	the	link	
between	 programmer	 intent	 and	 program.	 They	might	 also	 be	 de-
signed	maliciously	or	negligently.63	

However,	if	all	goes	well,	the	output	from	the	compiling	process	
is	bytecode,	a	low-level	representation	of	the	high-level	program	that	
the	computer	 can	execute	more	directly.	To	provide	some	concrete	
detail,	we	now	turn	to	the	blockchain	platforms	of	interest.	

B. AN	INTRODUCTION	TO	THE	BLOCKCHAIN	PLATFORM	
Blockchains	 are	 already	 the	 subject	 of	 a	 large	 legal	 literature.	

Here,	we	sketch	only	the	broadest	strokes.	Essentially,	they	are	plat-
forms	for	distributed	data	processing	that	create	incentives	for	users	
to	agree	on,	and	store,	outcomes	of	computation.64	A	blockchain	gen-
erally	 consists	 of	 two	 components:	 storage	 structures	 that	 track	

	 62.	 There	are	two	primary	ways	programs	are	executed:	directly	or	through	an	
interpreter.	Directly	 executed	programs	undergo	multiple	 translation	 (compilation)	
steps	taking	the	program	from	human-readable	source	code,	to	less-human	readable	
assembly	 code,	 to	machine	 readable	 instructions.	 See	 Introduction	 to	 Programming	
Languages/Compiled	 Programs,	 WIKIBOOKS	 (Sept.	 29,	 2019,	 12:45	 AM),	 https://en	
.wikibooks.org/w/index.php?title=Introduction_to_Programming_Languages/	
Compiled_Programs&oldid=3581047	 [https://perma.cc/RLC4-9QYN].	 Interpreted	
programs	generally	undergo	a	preliminary	form	of	compilation	but	are	not	themselves	
converted	into	machine	instructions.	Rather,	an	interpreter	executes	the	preliminary	
form	by	a	set	of	rules	acting	on	a	virtual	machine.	See	Introduction	to	Programming	
Languages/Interpreted	 Programs,	 WIKIBOOKS	 (Sept.	 27,	 2017,	 6:49	 PM),	 https://en	
.wikibooks.org/w/index.php?title=Introduction_to_Programming_Languages/	
Interpreted_Programs&oldid=3304944	[https://perma.cc/4UBZ-FZRZ].	
	 63.	 See	Ken	Thompson,	Reflections	on	Trusting	Trust,	Turing	Award	Lecture,	27	
COMMC’NS	ACM	761	(1984).	Solidity	compilers,	with	their	relative	closeness	to	block-
chain	based	assets,	make	a	similarly	attractive	target	for	attacks.	The	Solidity	founda-
tion	maintains	a	 list	of	known	vulnerabilities.	List	of	Known	Bugs,	 SOLIDITY,	https://	
solidity.readthedocs.io/en/v0.5.12/bugs.html	[https://perma.cc/XM2S-DAY4].	
	 64.	 See	 generally	 DE	FILIPPI	&	WRIGHT,	 supra	note	 33,	 at	 33–49;	 Theophanis	 C.	
Stratopoulos	&	 Jesús	 Calderón,	 Introduction	 to	 Blockchain	 for	 Accounting	 Students	
(Aug.	 20,	 2020)	 (unpublished	 manuscript),	 https://papers.ssrn.com/sol3/papers	
.cfm?abstract_id=3395619	 [https://perma.cc/6YP7-NZ8B];	DYLAN	YAGA,	PETER	MELL,	

332	 MINNESOTA	LAW	REVIEW	 [105:319	

	

changes	in	the	system	and	algorithms	that	ensure	consistency	of	data	
across	storage	locations.		

A	blockchain	identifies	data	records	by	hashes:	the	output	of	an	
algorithm	called	a	 cryptographic	hash	 function.65	This	 easy-to-com-
pute	 equation	 takes	 potentially	 voluminous	 data	 as	 input	 and	 pro-
duces	a	short,	fixed-length,	output—the	hash.	Critically,	there	are	no	
known	methods	to	easily	perform	the	reverse	computation.66	It	is	sim-
ilarly	hard	 to	 find	 two	different	 sets	of	data	 that	when	 fed	 into	 the	
function	both	produce	the	same	hash.67	This	creates	a	tie	between	the	
input	 data	 and	 the	 hash.	 The	 hash	 acts	 as	 the	 “name”	 of	 the	 block,	
uniquely	identifying	it	by	its	contents.	

Data	is	organized	into	blocks,	with	each	block	linking	to	a	set	of	
stored	data.	Each	block	contains	a	hash	(below	in	bold)	corresponding	
to	the	storage	records	linked	to	the	block	and	the	hash	of	the	previous	
block	(shown	as	“prev”).	

A	block’s	hash	is	computed	by	feeding	the	contents	of	the	block	
into	the	hash	function.	The	hash	therefore	is	strongly	tied	to	the	data	
within	the	block,	and	also	ties	the	block	to	those	that	come	before.	This	
property	ensures	an	ordering	to	the	blocks,	creating	the	chain	aspect	
of	a	blockchain.	Updates	(proposed	or	accepted)	to	a	blockchain	are	
generally	contained	within	 “transactions,”	 small	 sets	of	machine	 in-
structions	 or	 transactional	 records	 that	 comprise	 the	 data	 within	
blocks.	A	block	is	associated	with	transaction	data	through	an	addi-
tional	hash	stored	within	the	block,	in	our	figure	this	hash	is	depicted	
as	H(data).68	

NIK	ROBY	&	KAREN	SCARFONE,	NAT’L	INST.	OF	STANDARDS	&	TECH.,	INTERNAL	REPORT	8202,	
BLOCKCHAIN	 TECHNOLOGY	 OVERVIEW	 (2018),	 https://doi.org/10.6028/NIST.IR.8202	
[https://perma.cc/8E82-6GQR].	
	 65.	 Yaga	et	al.,	supra	note	64,	at	7–13;	Stratopoulos	&	Calderón,	supra	note	64,	at	
34–40.	
	 66.	 Note:	the	cryptographic	hash	functions	used	for	systems	such	as	blockchains	
bear	additional	security	properties.	See	 JONATHAN	KATZ	&	YEHUDA	LINDELL,	INTRODUC-
TION	TO	MODERN	CRYPTOGRAPHY	128–30	(2007).	
	 67.	 It	would	take	around	720	times	the	age	of	the	universe	to	find	a	collision	for	
its	hash	function.	See	Ashif	Shereef,	A	Physicist’s	Journey	into	Cracking	the	Bitcoin,	HACK-
ERNOON	(Mar.	27,	2018),	https://hackernoon.com/a-physicists-journey-into-cracking	
-bitcoin-4631e57158cc	[https://perma.cc/LTS6-M4BC].	
	 68.	 The	hash	over	the	data	 is	computed	with	the	aid	of	an	additional	structure	
known	as	a	Merkle	Tree.	The	properties	of	a	Merkle	Tree	allow	one	to	easily	notice	if	
the	contents	of	a	particular	transaction	have	changed	without	checking	the	entirety	of	

H1

prev: H0 H(data)

H2

prev: H1 H(data)

H3

prev: H2 H(data)

2020]	 TRANSACTIONAL	SCRIPTS	 333	

	

Using	a	chain	as	a	public	and	trusted	record	requires	a	mecha-
nism	to	achieve	consensus	on	the	contents	of	the	record.	Participants	
follow	a	well-defined	set	of	rules	that	allow	them	to	agree	both	on	the	
validity	of	a	particular	chain,	and	the	ordering	(and	acceptability)	of	
any	proposed	updates	to	the	chain.69	Participants	connect	to	one	an-
other	over	the	internet,	forming	a	subnetwork	within	the	larger	net-
work.	Participants	send	and	receive	messages	in	a	set	format	to	indi-
cate	their	responses	to	proposed	changes	to	the	blockchain.	

The	blockchain	records	each	update	that	has	ever	happened	to	
the	data	it	stores.	By	viewing	the	record	of	changes,	a	viewer	can	ac-
cess	the	historical	state	of	the	chain.	The	contents	of	a	blockchain	are	
fixed	only	so	long	as	the	participants	agree	about	what	constitutes	the	
set	 of	 previous	 transactions. 70 	Moreover,	 while	 the	 record	 of	 past	
transactions	may	be	unchanged,	a	future	transaction	may	modify	the	
ledger	to	make	the	most	recent	contents	identical	in	substance	to	the	
contents	at	a	prior	time	(differing	records	of	the	past	notwithstand-
ing).	

Protocols	commonly	feature	validators	who	vie	for	the	scarce	op-
portunity	to	submit	the	next	block	to	the	network.71	Those	that	suc-
ceed	at	adding	a	block	claim	a	reward.72	A	cap	on	the	amount	of	data	
that	can	be	stored	in	a	single	block,	in	combination	with	the	restricted	
opportunities	to	add	blocks,	limits	the	number	of	transactions	that	can	
be	processed	in	a	unit	of	time.73	

the	 data.	 See	 Shaan	 Ray,	 Merkle	 Trees,	 HACKERNOON	 (Dec.	 14,	 2017),	 https://	
hackernoon.com/merkle-trees-181cb4bc30b4	[https://perma.cc/M9CV-GDJW].	
	 69.	 These	rules	are	the	protocol	governing	the	system.	See	Grimmelmann,	supra	
note	33,	at	8.	
	 70.	 Forks	 serve	 as	 an	 “ever-present	 escape	 valve”	 from	majority	 consensuses	
with	which	a	minority	of	blockchain	participants	disagree.	Haque	et	al.,	supra	note	52,	
at	34.	
	 71.	 In	such	protocols,	a	subspecies	of	validators,	miners,	are	also	given	the	oppor-
tunity	to	mint	a	new	unit	of	the	corresponding	cryptocurrency,	updating	the	ledger	to	
grant	them	ownership	over	the	new	coin.	Id.	at	149.	
	 72.	 Opportunities	to	add	blocks	are	allocated	according	to	the	consensus	scheme,	
the	two	most	popular	of	these	being	Proof-of-Work,	which	probabilistically	allocates	
opportunities	 based	 on	 amount	 of	 computational	 effort	 spent,	 and	 Proof-of-Stake	
which	probabilistically	allocates	opportunities	in	proportion	to	a	miner’s	staked	cryp-
toasset.	
	 73.	 Dubbed	the	scaling	problem,	maximizing	transaction	throughput	is	a	highly	
active	area	of	research.	Proposed	solutions	 include	moving	certain	 transactions	off-
chain	and	other	novel	protocol	designs.	See,	e.g.,	Connor	Blenkinsop,	Blockchain’s	Scal-
ing	 Problem,	 Explained,	 COINTELEGRAPH	 (Aug.	 22,	 2018),	 https://cointelegraph.com/	
explained/blockchains-scaling-problem-explained	[https://perma.cc/PC48-3H75]	
(giving	an	overall	explanation	of	the	scaling	problem	and	presenting	off-chain	transac-
tions	as	a	possible	solution).	

334	 MINNESOTA	LAW	REVIEW	 [105:319	

	

An	individual	wishing	to	transact	via	the	network	submits	their	
proposed	transaction	to	the	peer-to-peer	network	and	indicates	how	
much	they	are	willing	to	pay	(in	cryptocurrency)	to	have	their	trans-
action	processed.74	Validators	will	process	such	user-submitted	trans-
actions,	claiming	associated	processing	fees.75	The	size	of	the	fee	is	in-
versely	correlated	with	how	long	the	network	will	take	to	process	the	
transaction,	as	a	larger	fee	more	strongly	incentivizes	validators	to	in-
clude	that	transaction	within	the	next	block.76	

Blockchain	ledger	entries	are	associated	with	identifiers	known	
as	 addresses,	 which	 determine	 who	 controls	 particular	 ledger	 en-
tries.77	Digital	keys	that	grant	control	over	assets	(or	data)	stored	in	a	
given	set	of	entries	are	stored	in	“wallets,”	which	are	files	or	programs	
containing	these	keys.	Colloquially,	some	equate	control	with	owner-
ship,	which	is	why	you’ll	hear	about	a	wallet’s	“owners.”	Of	course,	ac-
cess	and	the	ability	to	modify	doesn’t	necessarily	mean	ownership,	un-
less	 that	 apartment	 key	 you	 gave	 your	 dog	 walker	 was	 more	
significant	than	you	thought.	At	its	core,	a	cryptoasset	is	nothing	more	
than	an	entry	in	the	ledger,	secured	with	a	set	of	fancy	tools	that	mean	
only	those	people	who	know	the	access	digits	can	change	its	charac-
teristics.	

Finally,	public	blockchains	are	typically	designed	so	that	valida-
tors	or	other	users	can	unilaterally	join	and	leave	the	network.	Per-
missioned	blockchains	take	a	 fundamentally	different	approach,	ad-
mitting	 only	 preapproved	 validators	 to	 the	 consensus	 forming	
process.	While	potentially	useful	for	a	consortium	of	known	parties,	
or	 for	 use	within	 an	 individual	 business,	 permissioned	 blockchains	

	 74.	 In	some	systems,	portions	of	the	transaction	fee	may	be	optional,	but	this	may	
result	in	the	network	failing	to	ever	process	a	transaction.	
	 75.	 Cf.	Rebecca	Bratspies,	Cryptocurrencies	and	the	Myth	of	the	Trustless	Transac-
tion,	25	MICH.	TECH.	L.	REV.	1,	20–21	(2018)	(indicating	that	individual	transaction	fees	
increase	as	the	network	load	increases,	leading	to	transaction	fees	over	$55	dollars	per	
transaction	at	one	point	for	Bitcoin	transactions).	
	 76.	 Id.;	 see	also	FILIP	LUNDIN	&	FREDRIK	RAHM,	 EVALUATING	RISK	AND	REWARD	FOR	
VALIDATORS	IN	A	CRYPTOCURRENCY	PROOF-OF-STAKE	NETWORK	11–12	(2018)	(explaining	
the	 inverse	 relationship	between	validators	 incentivization	and	 transaction	process	
risk).	
	 77.	 These	are	normally	derived	from	users’	cryptographic	keys	or	the	result	of	a	
hash	function	applied	to	relevant	data.	

2020]	 TRANSACTIONAL	SCRIPTS	 335	

	

rely	on	users’	trust	in	the	list	validators,	preapproved	by	the	entity	op-
erating	the	blockchain.78	This	limits	their	use	in	the	low-trust	market-
place	 for	 which	 transactional	 scripts	 are	 most	 often	 touted. 79 	We	
therefore	focus	our	analysis	on	the	“permissionless”	ecosystem.80		

C. ETHEREUM	AND	SCRIPTING	
Bitcoin	is	an	awkward	commercial	platform,	mostly	useful	for	re-

cording	 and	 facilitating	 the	 flow	 of	 bitcoin	 transactions.81	Realizing	
the	utility	of	performing	more	complex	operations	on	a	blockchain,	a	

	 78.	 See	 Sklaroff,	 supra	 note	19,	 at	276–77	n.50	 (“[T]he	 advantages	of	 [permis-
sioned]	blockchains	exist	in	tandem	with	reliance	on	offline	identity.	.	.	.	[P]articipants	
on	 permissioned	 blockchains	 are	 typically	 bound	 by	 off-chain,	 real-world	 agree-
ments[.]”	(internal	quotations	omitted)).	
	 79.	 Most	commenters	agree	with	Ian	Kane,	COO	of	TERNIO,	in	thinking	that	“per-
mission[ed]	blockchains	have	their	place	specifically	 in	an	enterprise	environment.”	
Shehryar	Hasan,	Private	Blockchains	Are	Bullshit,	Expert	Says,	BLOCKPUBLISHER	(Jan.	25,	
2019),	https://blockpublisher.com/private-blockchains-are-bullshit-expert-says	
[https://perma.cc/9JDU-DDMC];	see	also	Justin	O’Connell,	What	Are	the	Use	Cases	for	
Private	 Blockchains?	 The	 Experts	 Weigh	 in,	 BITCOIN	MAG.	 (June	 20,	 2016),	 https://	
bitcoinmagazine.com/articles/what-are-the-use-cases-for-private-blockchains-the	
-experts-weigh-in-1466440884	 [https://perma.cc/DT5Y-ENTJ]	 (finding	 the	value	of	
private	blockchains	 is	 in	 their	ability	 to	 “provide	 interesting	opportunities	 for	busi-
nesses	to	leverage	[their]	trustless	and	transparent	foundation	for	internal	and	busi-
ness-to-business	use	cases”);	cf.	EUR.	UNION	BLOCKCHAIN	OBSERVATORY	&	F.,	BLOCKCHAIN	
AND	 THE	 GDPR	 16	 (2018),	 https://www.eublockchainforum.eu/sites/default/files/	
reports/20181016_report_gdpr.pdf	 [https://perma.cc/74D2-QF2X]	 (suggesting	 that	
permissioned	blockchains	might	need	permissionless	blockchains	in	order	to	be	glob-
ally	interoperable).	
	 80.	 The	computer	science	literature	explores	a	variety	of	scenarios	in	which	net-
work	participants	have	greater	or	lesser	trust	in	other	participants.	These	works	oc-
cupy	the	space	between	assuming	an	overwhelming	majority	of	participants	are	hon-
est	and	assuming	preexisting	 trusted	relationships	with	other	network	participants	
(permissioned	models).	Such	constitute	a	middle	ground	between	permissioned	and	
permissionless	 approaches	 to	 distributed	 computation,	 and	 generally	 represent	 a	
trade-off	between	scalability	and	trust.	While	laudable	efforts	reduce	the	level	of	trust	
that	it	is	necessary	to	sacrifice	for	substantial	gains	in	scalability,	these	subtleties	are	
not	the	focus	of	our	work.	For	treatment	of	a	technique	for	scaling	blockchain	compu-
tations	and	 for	a	discussion	on	other	approaches,	 see	Harry	Kalodner,	Steven	Gold-
feder,	Xiaoqi	Chen,	S.	Matthew	Weinberg	&	Edward	W.	Felten,	Arbitrum:	Scalable,	Pri-
vate	Smart	Contracts,	27	PROC.	USENIX	SEC.	SYMP.	1353,	1353	(2018).	
	 81.	 While	Bitcoin	can	be	scripted	to	perform	sophisticated	tasks,	doing	so	is	chal-
lenging.	Coders	wishing	 to	do	so	must	work	against	 the	 limited	 functionality	of	 the	
platform.	 Jacqui	Frank	&	Sara	Silverstein,	Vitalik	Buterin	Created	One	of	 the	World’s	
Largest	Cryptocurrencies	in	His	Early	Twenties—Here’s	How	He	Did	It	and	Why,	BUS.	IN-
SIDER	 (Feb.	 13,	 2019,	 6:22	 AM),	 https://www.businessinsider.com/vitalik-buterin	
-created-ethereum-one-of-the-worlds-three-largest-cryptocurrencies-2019-1	
[https://perma.cc/TD7K-XJRN]	(relaying	Buterin’s	belief	that	Bitcoin	is	a	limited	func-
tionality	medium).	

336	 MINNESOTA	LAW	REVIEW	 [105:319	

	

programmer	 named	 Vitalik	 Buterin	 proposed	 and	 developed	
Ethereum,	a	blockchain	based	computing	platform,	with	an	associated	
cryptocurrency,	Ether.82	The	protocol’s	explicit	goal	was	to	permit	en-
hanced	scripting—more	complicated	logical	operations	than	record-
ing	ownership—on	a	blockchain.	Ethereum	uses	the	Ethereum	Virtual	
Machine	(EVM)—a	software	system	with	predefined	rules	and	opera-
tions,	which	you	can	think	of	as	a	simulated	computer.83	

The	Ethereum	Virtual	Machine	enables	programs	to	store	data	on	
the	Ethereum	blockchain	and	defined	how	the	original	data	could	be	
modified.84 	By	 the	 nature	 of	 the	 blockchain,	 all	 data	 is	 public	 and	
therefore	replicable;	the	EVM,	however,	allows	developers	to	restrict	
how	the	data	may	be	modified.	Storage	and	control,	in	turn,	created	
the	platform	for	transactional	scripts.	Scripts	are	programs	operating	
on	Ethereum,	which	when	executed	(or	“called”)	affect	the	ledger	it-
self.	

	 82.	 On	the	various	kinds	of	cryptocurrencies	and	their	relationship	to	monetary	
policy,	see	Max	Raskin,	Fahad	Saleh	&	David	Yermack,	How	Do	Private	Digital	Curren-
cies	Affect	Government	Policy?	(Nat’l	Bureau	of	Econ.	Rsch.,	Working	Paper	No.	26219,	
2020).	
	 83.	 Kolber,	supra	note	25.	Solidity,	the	most	common	language	used	to	program	
Ethereum	transactional	scripts	is	Turing	complete,	meaning	it	can	in	theory	perform	
any	program.	This	is	limited	only	by	the	restrictions	the	protocol	places	on	complexity	
to	mitigate	denial	of	service	attacks.	See	Niharika	Singh,	Turing	Completeness	and	the	
Ethereum	Blockchain,	HACKERNOON	(Feb.	16,	2019),	https://hackernoon.com/turing-
completeness-and-the-ethereum-blockchain-c5a93b865c1a	 [https://perma.cc/7EU5	
-EVXP].	The	EVM	draws	its	inspiration	from	common	models	of	computer	architecture	
with	modifications	that	ensure	the	integrity	of	scripts’	code.	While	this	architecture	is	
foreign	to	the	computers	on	which	the	software	runs,	it	is	simulated	by	way	of	the	vir-
tual	 machine.	 See	 Preethi	 Kasireddy,	 How	 Does	 Ethereum	 Work,	 Anyway?,	 MEDIUM	
(Sept.	 27,	 2017),	 https://medium.com/@preethikasireddy/how-does-ethereum	
-work-anyway-22d1df506369	[https://perma.cc/5G3V-MCDM].	
	 84.	 For	a	more	complete	discussion	on	the	limits	of	the	Bitcoin	model,	see	Con-
senSys,	Thoughts	on	UTXO	by	Vitalik	Buterin	(Co-Founder	of	Ethereum),	MEDIUM	(Mar.	
9,	 2016),	 https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin	
-2bb782c67e53	[https://perma.cc/78P6-GRDJ].	As	agents	are	able	to	manipulate	the	
records	stored	on	the	blockchain,	transactional	scripts	are	able	to	transfer	value	con-
tingent	on	those	records.	This	is	the	true	source	of	their	utility	over	other	types	of	pro-
grams	that	interact	with	distributed	databases:	the	tight	integration	of	an	asset	storage	
mechanism	(cryptocurrencies	and	cryptoassets)	with	a	programmatic	way	to	transfer	
ownership	(transactional	scripts).	The	coupling	of	the	two	ensures	that	the	value	of	
the	asset	is	conditional	on	playing	by	the	rules	of	the	game—which	in	turn	provides	
certain	assurances	that	the	contracts	will	be	executed.	

2020]	 TRANSACTIONAL	SCRIPTS	 337	

	

The	instruction	set	provided	by	Ethereum	is	as	powerful	and	ex-
pressive	as	any	other	programming	 language.85	If	 limits	are	not	 im-
posed	 on	 transactional	 script	 running	 time	 and	 resource	 require-
ments,	 a	 malicious	 actor	 could	 force	 validators	 to	 perform	 never	
ending	computations,	halting	all	useful	work	on	the	chain.	Validators	
must	 also	 be	 incentivized	 to	 spend	 their	 computational	 resources	
evaluating	scripts.	Ethereum	therefore	imposes	what	we	term	a	com-
plexity	tax:	transaction	fees	proportional	to	the	computation	required	
by	a	transaction.86	This	fee	is	known	as	gas	and	is	paid	in	fractional	
amounts	of	ether.87	The	Ethereum	protocol	specifies	a	hard	limit	on	
how	much	gas	may	be	consumed	by	a	single	transaction.88	Thus,	the	
amount	 of	 gas	paid	per	 transaction	 is	determined	by	 the	Ethereum	
protocol,	while	the	exchange	rate	is	determined	by	the	user.	The	user	
must	also	pre-pay	gas	that	in	their	estimation	will	sufficiently	cover	
costs.	 If	 this	pre-payment	 is	 too	 low,	and	there	 is	 insufficient	gas	to	
completely	execute	the	script,	the	script	will	terminate	without	a	re-
fund.89	

There	are	70	different	operations	understood	by	the	EVM,	each	
of	which	is	associated	with	a	cost,	based	on	the	amount	of	time	and	
energy	it	takes	a	validator	to	execute	the	operation.	Here	are	only	a	
few,	with	their	associated	costs.	

	

	 85.	 Ethereum	 scripts	 require	 special	 purpose	 languages	 and	 tools	 to	 deploy.	
There	is	active	research	in	designing	languages	that	facilitate	better	development	prac-
tices.	See	generally	Mudabbir	Kaleem,	Anastasia	Mavridou	&	Aron	Laszka,	Vyper:	A	Se-
curity	Comparison	with	Solidity	Based	on	Common	Vulnerabilities,	2ND	CONF.	ON	BLOCK-
CHAIN	RSCH.	&	APPLICATIONS	FOR	INNOVATIVE	NETWORKS	&	SERVS.,	June	14,	2020.	
	 86.	 See	Bruno	Skvorc,	Ethereum:	How	Transaction	Costs	Are	Calculated,	SITEPOINT	
(May	 24,	 2018),	 https://www.sitepoint.com/ethereum-transaction-costs	 [https://	
perma.cc/NAU4-RTYJ]	 (describing	 the	 proportionality	 of	 gas	 costs	 in	 Ethereum’s	
structure).	
	 87.	 For	a	detailed	explanation	of	the	internal	mechanisms	of	Ethereum,	see	gen-
erally	Kasireddy,	supra	note	83.	
	 88.	 At	the	time	of	writing,	this	was	set	at	approximately	8	million	gas	(with	an	
upcoming	change	to	10	million	gas),	equivalent	to	approximately	$2	USD	at	a	gas	price	
of	1	Gwei	(billionths	of	an	ETH).	
	 89.	 Existing	literature	describes	the	complexity	tax	in	general	terms	without	elab-
orating	on	its	exact	costs.	See,	e.g.,	Thibault	Schrepel,	Is	Blockchain	the	Death	of	Anti-
trust	Law?	The	Blockchain	Antitrust	Paradox,	3	GEO.	L.	TECH.	REV.	281,	292	(2019)	(not-
ing	 that	Ethereum	rewards	successful	miners	with	 transaction	 fees);	Sklaroff,	supra	
note	19,	at	293	n.139	(describing	the	“supply	and	demand	dynamic”	created	and	its	
policing	effects	on	“buggy	or	infinitely	recursive	code”);	id.	at	294	n.143	(“[T]his	solu-
tion	would	be	prohibitively	expensive	from	a	transaction	fee	perspective.	.	.	.”).	

338	 MINNESOTA	LAW	REVIEW	 [105:319	

	

Operation	
Name	

Max	Cost	
(Gas)	

Cost	($)/1	million	
operations90	 Effect	

ADD	 3	 ~$30	 Adds	two	numbers	
together	

MUL	 5	 ~$50	 Multiplies	two	num-
bers	

SSLOAD	 200	 ~$2000	
Load	a	single	num-
ber	from	permanent	
storage91	

SSTORE	 20000	 ~$200,000	
Store	a	single	num-
ber	into	permanent	
storage	

	
The	most	expensive	operation,	SSTORE,	updates	data	that	consti-

tute	the	Ethereum	ledger’s	memory.92	As	it	adds	to	the	long-term	cost	
of	storing	the	ledger,	the	protocol	imposes	a	substantial	up-front	fee.	

Data	storage	on	a	public	ledger	forms	a	key	component	of	many	
proposed	blockchain	use-cases,93	but	it	is	financially	costly	in	compar-
ison	to	general	purpose	storage	(which	is	available	from	commercial	
providers	on	a	yearly	basis	at	approximately	one-ten-millionth	of	the	
cost	of	Ethereum	based	storage).94	Similarly,	the	processor	in	a	typical	
laptop	 performs	 on	 the	 order	 of	 billions	 of	 operations	 per	 second,	

	 90.	 These	figures	are	calculated	at	the	default	gas	price	of	3 × 10!"	gas/ETH	and	
an	exchange	rate	of	$295	USD/ETH	and	are	rounded	up	to	one	significant	figure.	See	
Danny	 Ryan,	Calculating	 Costs	 in	 Ethereum	 Contracts,	 HACKERNOON	 (Sept.	 6,	 2017),	
https://hackernoon.com/ether-purchase-power-df40a38c5a2f	[https://perma.cc/	
6SUH-ADGR].	
	 91.	 The	maximum	value	on	which	the	EVM	operates	on	in	a	single	operation	is	
2^256.	Outside	of	 technical	 reasons	 for	 this	 choice,	 this	 limit	prevents	 coders	 from	
storing	all	their	data	represented	as	one	huge	number	in	an	attempt	to	pay	lower	gas	
costs.	
	 92.	 See	Ting	Chen,	Xiaqi	Li,	Xiapu	Luo	&	Xiaosong	Zhang,	Under-Optimized	Smart	
Contracts	Devour	Your	Money,	2017	IEEE	24TH	INT’L	CONF.	ON	SOFTWARE	ANALYSIS,	EVO-
LUTION	&	REENGINEERING,	Mar.	11,	2017	(indicating	that	SSTORE	is	particularly	expen-
sive	among	smart	contract	operations	in	the	Ethereum	Virtual	Machine).	
	 93.	 Even	for	systems	that	purport	to	store	the	bulk	of	data	off-chain,	the	cost	of	
storing	 references	 to	 the	 off-chain	 data	 necessitates	 a	 cost-benefit	 approach	 to	 as-
sessing	the	viability	of	a	blockchain	based	solution.	See	MEDICALCHAIN,	WHITEPAPER	2.1,	
at	1,	14	(2018),	https://medicalchain.com/Medicalchain-Whitepaper-EN.pdf	[https://	
perma.cc/KSC8-AUS4]	(observing	that	while	records	themselves	are	stored	off	chain,	
each	update	to	a	record	necessitates	storing	a	new	value	on	the	blockchain);	see	also	
ARMAN	JABBARI	&	PHILIP	KAMINSKY,	BLOCKCHAIN	AND	SUPPLY	CHAIN	MANAGEMENT	(2018),	
http://www.mhi.org/downloads/learning/cicmhe/blockchain-and-supply-chain	
-management.pdf	 [https://perma.cc/925L-X9R7]	 (envisioning	 large-scale	 supply-
chain	data	storage	on	the	blockchain).	
	 94.	 See	Amazon	S3	Pricing,	AWS,	https://aws.amazon.com/s3/pricing	 [https://	
perma.cc/4VHU-77H6].	

2020]	 TRANSACTIONAL	SCRIPTS	 339	

	

which	would	equate	to	hundreds	of	dollars’	worth	of	computations	on	
Ethereum.95	Gas	costs	don’t	stem	from	the	regular	unit	cost	of	storing	
a	chunk	of	data	or	performing	a	computation.96	They	are	artifacts	of	
the	replicated	work	and	storage	used	to	maintain	and	validate	consen-
sus.97	

This	 complexity	 tax	has	 limited,	but	 real	 implications.	We	con-
cede	that	neither	storage	nor	complex	programming	are	what	block-
chains	are	for,	and	such	special	purpose	tools	shouldn’t	be	evaluated	
in	comparison	with	traditional	computers.	But	it’s	important	to	recog-
nize	that	for	some	proposed	uses	of	transactional	scripts—such	as	en-
coding	semantic	frameworks	like	discretion,	good	faith,	and	best	ef-
forts—public	blockchain	solutions	incur	significant	costs.98	

The	result	of	such	costs	is	that	it	is	practically	impossible	to	run	
some	kinds	of	scripts	in	public.	Many	real-world	computational	tasks	
(searching	and	sorting	large	amounts	of	data,	machine	learning,	opti-
mization)	 require	 non-trivial	 amounts	 of	 computational	 power	
and/or	data	storage.	For	example,	though	it	would	be	potentially	use-
ful	to	write	a	script	that	used	an	algorithm	to	determine	if	a	worker	
had	used	her	best	efforts,	and	then	pay	her	for	her	time,	that	kind	of	
computation	is	not	practical	other	than	by	delegating	the	computation	
to	an	agent	“off-chain.”99	Current	scripts	thus	generally	contain	only	

	 95.	 Some	sites	indicate	that	modern	processors	process	operations	at	the	tens	of	
billions	of	floating-point	operations	per	second.	On	the	scale	of	our	illustrations,	that	
is	comparable	with	the	basic	arithmetic	operations	of	the	EVM.	See,	e.g.,	CPU	Perfor-
mance,	 ASTEROIDS	 HOME,	 https://asteroidsathome.net/boinc/cpu_list.php	 [https://	
perma.cc/39EF-LGL6].	
	 96.	 Noted	blockchain	researcher	Emin	Gün	Sirer	correctly	notes	that	costs	of	stor-
ing	 the	 blockchain	 itself	 are	 negligible	 on	 a	 per	 node	 basis.	 Emin	 Gün	 Sirer	
(@el33th4xor),	TWITTER	(Nov.	29,	2019,	1:13	PM),	https://twitter.com/el33th4xor/	
status/1200477778463907841	[https://perma.cc/2HDN-CCL5].	Our	concern	is	how	
this	cost	is	magnified	by	current	consensus	protocols.	
	 97.	 These	particular	costs	are	distinct	from	the	computational	cost	incurred	by	
Proof-of-Work	 style	 consensus	 algorithms	 that	 establish	 consensus	 in	 the	 first	 in-
stance.	Rather,	 the	need	 to	 check	 the	validity	of	 the	output	 from	computations	and	
maintain	copies	of	the	output	(to	allow	failure	recovery),	impose	a	cost	that	is	paid	ex	
ante	by	a	tax	on	expensive	computations.	
	 98.	 While	Sklaroff	notes	the	potential	high	ex	ante	cost	of	developing	contracts	
flexible	enough	to	incorporate	legal	frameworks,	we	here	quantify	those	costs,	focus	
on	the	ongoing	taxes	imposed	by	the	blockchain	paradigm,	and	expand	on	coding	real-
ities	that	further	drive	development	costs.	Sklaroff,	supra	note	19,	at	279.	
	 99.	 Off-chain	transactions	are	those	that	move	value	from	the	blockchain	to	be	
processed	externally.	Such	transactions	may	eventually	be	reconciled	and	integrated	
back	onto	the	chain.	See	Off-Chain	Transactions,	BITCOIN	WIKI	(June	18,	2019,	4:43	AM),	
https://en.bitcoin.it/wiki/Off-Chain_Transactions	[https://perma.cc/9YD3-VWLQ].	

340	 MINNESOTA	LAW	REVIEW	 [105:319	

	

the	simplest	of	if-then	type	logic.100	A	useful	analysis	of	the	legal	sig-
nificance	of	our	scripts	requires	a	clear-eyed	evaluation	as	to	the	likely	
future	uses	and	limitations	of	the	form.	

There	 is	 a	 robust	 technical	 literature	 exploring	mechanisms	 to	
avoid	the	complexity	tax.	But	most	proposals	to	mitigate	costs	trade-
off	between	the	security	and	transparency	of	the	on-chain	model,	and	
the	efficiency	attainable	under	frameworks	that	assume	more	on	the	
part	of	other	protocol	participants.101	While	there	are	some	improve-
ments	that	can	be	made	to	efficiently	scale	blockchains	without	com-
promising	the	promise	of	truly	trustless	exchange,102	the	most	effec-
tive	 solutions	will	 inevitably	 delegate	 the	 bulk	 of	 computation	 and	
storage	to	smaller	subsets	of	the	network	or	even	to	non-participants	
off	chain.103		

The	complexity	tax	thus	produces	a	real	hurdle	for	certain	kinds	
of	 complex	 contracting.	 There	 are	 known	 techniques	 to	 reduce	 the	
cost	of	most	computations,	but	finding	a	way	to	minimize	blockchain	
data	storage	costs	while	ensuring	the	data	is	accessible	on	demand	is	
an	open	problem.104	Firms	considering	off-chain	solutions	must	there-

	 100.	 The	quarrelsome	reader	may	note	that	all	imperative	paradigm	programming	
adheres	to	an	if-then	paradigm.	We	merely	note	the	paucity	of	sophistication	in	scripts	
currently	deployed.	For	a	brief	discussion	on	different	programming	paradigms,	see	
Jing	 Chen,	 A	 Brief	 Survey	 of	 “Programming	 Paradigms,”	 MEDIUM	 (Apr.	 11,	 2019),	
https://medium.com/@jingchenjc2019/a-brief-survey-of-programming-paradigms	
-207543a84e2b	[https://perma.cc/V3WE-HECF].	
	 101.	 For	 an	 analysis	 of	 various	 designs	 facilitating	 off-chain	 computation	 by	 a	
smaller	number	of	nodes	and	reducing	the	cost	imposed	by	large	scale	replication	of	
work,	see	Lewis	Gudgeon,	Pedro	Moreno-Sanchez,	Stefanie	Roos,	Patrick	McCorry	&	
Arthur	 Gervais,	 SoK:	 Layer-Two	 Blockchain	 Protocols,	 https://eprint.iacr.org/2019/	
360.pdf	[https://perma.cc/N9MZ-CK3U].	See	also	Kyle	Croman,	Christian	Decker,	Ittay	
Eyal,	Adem	Efe	Gencer,	Ari	Juels,	Ahmed	Kosba,	Andrew	Miller,	Prateek	Saxena,	Elaine	
Shi,	Emin	Gün	Sirer,	Dawn	Song	&	Roger	Wattenhofer,	On	Scaling	Decentralized	Block-
chains,	in	FINANCIAL	CRYPTOGRAPHY	AND	DATA	SECURITY	106,	106–10	(Jeremy	Clark,	Sa-
rah	Meiklejohn,	Peter	Y.A.	Ryan,	Dan	Wallach,	Michael	Brenner	&	Kurt	Rohloff	eds.,	
2016).	
	 102.	 One	proposal	that	succeeds	in	maintaining	a	trustless	network	while	improv-
ing	substantially	on	scaling	is	the	Avalanche	Protocol,	which	proposes	an	alternative	
to	proof-of-work.	See	Team	Rocket,	Maofan	Yin,	Kevin	Sekniq,	Robbert	Van	Renesse	&	
Emin	Gün	Sirer,	Scalable	and	Probabilistic	Leaderless	BFT	Consensus	Through	Meta-
stability	(Aug.	24,	2020)	(unpublished	manuscript),	ARXIV:	1906.08936.	However	even	
protocols	 that	minimize	 computational	 costs	 such	 as	 Avalanche	 and	 Arbitrum	 still	
don’t	realize	the	promise	of	effectively	free	transactional	scripts.	See	Kalodner	et	al.,	
supra	note	80,	at	1353–54	(giving	a	description	of	Arbitrum).	
	 103.	 Importantly	for	our	analysis	of	buggy	scripts	in	Part	III,	infra,	even	where	off-
chain	scaling	techniques	are	adopted,	the	code	remains	publicly	accessible.	
	 104.	 See	Croman	et	al.,	supra	note	101,	at	108–10.	

2020]	 TRANSACTIONAL	SCRIPTS	 341	

	

fore	ask	whether	the	game	is	worth	the	candle.	That	is,	public	block-
chains	 have	 important	 virtues:	 primarily,	 they	 enable	 trustless	 ex-
change	 between	 pseudo-anonymous	 counterparties.	 Blockchain-
based	alternatives	may	not	have	those	virtues.	

D. CODING	ON	ETHEREUM	
We	now	return	to	our	coders’	work	and	focus	on	how	they	write	

transactional	scripts.	Let’s	suppose	that	a	team	of	coders	has	authored	
high-level	 code	 and	 run	 that	 code	 through	 the	 compiler,	 producing	
bytecode	that	can	now	be	executed	on	the	EVM.	

If	they	are	responsible,	they	must	now	test	the	program;	only	af-
ter	testing	will	it	be	deployed.	During	development	programmers	will	
go	through	many,	many	cycles	of	coding,	compiling	and	testing,	find-
ing	bugs	and	areas	that	need	improvement.105		

	 105.	 Cf.	Rich	Butkevic,	The	Lifecycle	of	a	Software	Bug,	OPENSOURCE	(June	25,	2018),	
https://opensource.com/article/18/6/life-cycle-software-bug	[https://perma.cc/	
2FMU-YVKE]	(describing	how	development	teams	fix	bugs).	

342	 MINNESOTA	LAW	REVIEW	 [105:319	

	

To	make	the	discussion	more	concrete,	we	present	the	StagedContract	
script,	written	in	Solidity,	and	explain	how	it	is	processed	by	the	vir-
tual	machine.	It	illustrates	a	simple	deal:	the	owner	of	the	script	agrees	
to	 pay	 for	work	 in	 increments	 of	 1ETH	 as	 the	 recipient	 completes	
stages	of	some	off-chain	job.106	The	recipient	can	claim	payment	for	
each	stage	without	the	intervention	of	the	owner	up	to	the	total	value	
of	the	contract.		

	 106.	 Not	depicted	is	a	mechanism	for	the	owner	to	increase	the	amount	of	payment	
available	over	time.	

Figure	2:	Transactional	Script	in	Solidity	

2020]	 TRANSACTIONAL	SCRIPTS	 343	

	

StagedContract	 also	 allows	 the	 recipient	 to	 offer	 a	 discount	
through	the	discount()	function	which	the	owner	can	approve	via	the	
approveDiscount()	function.	Illustrative	of	the	complexity	tax,	at	time	
of	writing,	it	cost	$1.30	to	deploy	the	script	and	$0.08	to	execute	the	
completeStage()	 function	 even	 once.	 (Imagine	 using	 this	 script	 for	
payment	of	hundreds	of	thousands	of	gig	workers.)	

Like	most	computer	programs,	Solidity	requires	the	availability	
of	 fundamental	computational	structures:107	basic	arithmetic	opera-
tions,	 operations	 to	 access	 and	modify	 some	 form	 of	memory	 (the	
“state”),	 a	way	 to	 input/output	data,	 and	 crucially,	 a	mechanism	 to	
choose	between	different	possible	execution	paths	based	on	the	state	
of	the	computer.	These	are	the	key	elements	implemented	by	the	EVM.		

Even	this	very	simple	script	requires	expertise	to	conceive	of,	im-
plement	and	deploy.	It	requires	still	more	expertise	to	recognize	that	
it	contains	a	serious	bug.	Noting	that	 if	an	 integer	grows	or	shrinks	
beyond	 the	 limit	 set	 by	 the	 EVM	 (overflow	 and	 underflow	 respec-
tively),	the	integer	resets,	a	sneaky	recipient	could	mount	the	follow-
ing	attack:108		

	
1. The	recipient	offers	a	discount	that	reduces	the	cost	of	the	job	

to	nothing,	which	the	greedy	owner	readily	accepts.	
	

2. The	recipient	offers	an	additional	discount	in	advance	of	fu-
ture	work	and	waits	until	just	before	the	owner	approves	it.	
	

3. The	 recipient	 quickly	 engorges	 their	 discount	 to	 the	maxi-
mum	size	permitted	by	the	EVM.	
	

4. The	unsuspecting	owner	 fails	 to	notice	 the	 change	and	ap-
proves	the	oversized	discount,	reducing	the	sum	available	for	
payment	so	much	that	it	underflows—resetting	the	amount	
available	for	payment	to	the	maximum	value	permitted	by	the	
EVM.	
	

5. The	 recipient	 now	 executes	 completeStage()	 repeatedly,	
emptying	 the	 script	 of	 its	 Ether,	 without	 running	 into	 the	
limit.	

	 107.	 These,	along	with	the	ability	to	execute	loops,	are	also	the	elements	that	per-
mit	the	EVM	to	support	a	Turing	complete	language.	See	Singh,	supra	note	83.	
	 108.	 While	the	scenario	is	admittedly	contrived,	it	serves	to	illustrate	the	difficulty	
of	writing	correct	code.	

344	 MINNESOTA	LAW	REVIEW	 [105:319	

	

This	is	but	one	of	many	ways	in	which	the	specifics	of	the	EVM	
can	trip	up	otherwise	code-literate	individuals.	

The	particular	problem	for	scripts	is	that	when	they	are	already	
on	blockchain	and	parties	have	begun	committing	assets,	they	can’t	be	
easily	 modified	 (at	 least	 without	 pushing	 out	 a	 unilateral	 update	
which	might	cause	serious	reputational	blowback).109	Therefore,	wise	
developers	would	first	try	it	out	on	“testnets,”	small	scale	blockchains	
replicating	the	behavior	of	their	larger	siblings,	but	without	the	goal	
of	 preserving	 immutability	 or	 value	 long	 term.110	Testnets	 are	 also	
used	to	trial	changes	to	the	core	protocol	of	a	blockchain,	without	im-
pacting	existing	users.111	Testnet	transactions	are	generally	free.112	

When	a	developer	is	ready	to	test	their	transactional	script,	either	
on	the	real	network	or	on	the	testnet,	they	submit	a	special	transaction	
to	the	network.	The	transaction	includes	the	bytecode	of	the	transac-
tional	script,	an	amount	of	gas	to	pay	for	the	deployment,	and	a	wallet	
from	which	the	gas	will	be	transferred	out.	The	transactional	script	is	
then	stored	on	the	blockchain,	and	its	component	functions	and	stor-
age	can	be	accessed.	

Modern	 programming	 languages,	 including	 Solidity	 and	 the	
Ethereum	EVM	 instruction	set,	 separate	segments	of	 code	 that	per-
form	discrete	operations	into	“functions,”	each	of	which	require	a	de-
veloper	using	the	function	to	provide	certain	inputs.	Once	a	function	
finishes	executing,	it	produces	an	output	which	is	provided	to	either	
the	user	or,	in	instances	where	a	function	is	executed	(“called”)	within	
another	function	(the	“caller”),	the	output	is	available	for	use	within	
the	caller.	To	call	a	function,	the	caller	must	also	include	gas	sufficient	
to	pay	for	the	execution	of	the	callee	(and	in	a	recursive	fashion	for	
any	functions	the	callee	might	call).		

	 109.	 See	Andrew	Chow,	Comment	to	Why	Is	It	Impossible	to	Modify	a	Transaction	in	
the	 Blockchain,	 STACKEXCHANGE:	 BITCOIN	 (Mar.	 30,	 2018,	 5:02	 PM),	 https://bitcoin	
.stackexchange.com/questions/73229/why-is-it-impossible-to-modify-a-transaction	
-in-the-blockchain	[https://perma.cc/H65D-AGLA]	(“Overall,	modifying	transactions	
already	in	the	blockchain	requires	remining	blocks,	and	after	a	transaction	already	has	
a	few	confirmations,	doing	this	requires	immense	amounts	of	computing	power.”).	
	 110.	 Testnet,	 BITCOIN	 WIKI	 (Apr.	 14,	 2020),	 https://en.bitcoin.it/wiki/Testnet	
[https://perma.cc/5743-J2KZ].	
	 111.	 See	MyEtherWallet,	Understanding	 Blockchain	 Changes:	 Testnets	 and	Main-
nets,	 MEDIUM	 (May	 26,	 2019),	 https://medium.com/myetherwallet/understanding	
-blockchain-changes-testnets-and-mainnets-c2171a8e835f	 [https://perma.cc/C5ZL-
J7DN]	(indicating	the	potential	uses	of	testnets).	
	 112.	 See	id.	(“[I]n	Ethereum’s	case,	the	gas	payment	for	testnet	computations	does	
not	cost	any	‘real’	money”).	

2020]	 TRANSACTIONAL	SCRIPTS	 345	

	

This	all	assumes	the	coders	have	implemented	each	step	of	this	
process	correctly.	But,	as	the	StagedContract	example	illustrates,	er-
rors	can	be	subtle.	There	simply	is	no	foolproof	method	to	generate	
software	that	matches	its	initial	specification.113	Further,	even	as	soft-
ware	is	patched	to	remove	old	bugs	many	new	bugs	creep	in,	and	soft-
ware	does	not	converge	to	a	bug-free	state.114	

Penetration	 testing	 and	 security	 auditing	 are	 other	 important	
components	of	sophisticated	software	development.	Specialized	secu-
rity	engineers	attempt	to	find	and	exploit	security	flaws	and	assess	the	
quality	of	code	as	relevant	 to	security.115	However,	 security	 failures	
bedevil	even	the	best	audited	software	packages.116	The	real	test	for	
code,	 particularly	 when	 designed	 to	 operate	 adversarial	 environ-
ments,	comes	only	when	it	is	deployed	and	used.	It	is	often	only	when	
the	code	meets	the	road	that	developers	find	the	bulk	of	bugs,	improv-
ing	on	their	code	by	constant	 iteration.117	Even	then,	vulnerabilities	
may	remain	latent	for	long	periods	of	time	prior	to	discovery.118		

	 113.	 See	Wenbo	Guo,	Dongliang	Mu,	Xinyu	Xing,	Min	Du	&	Dawn	Song,	DEEPVSA:	
Facilitating	Value-Set	Analysis	with	Deep	Learning	for	Postmortem	Program	Analysis,	28	
PROC.	USENIX	SEC.	SYMP.	1787,	1787	(2019)	(remarking	on	the	inevitability	of	flaws	in	
software).	
	 114.	 See	Saender	A.	Clark,	The	Software	Vulnerability	Ecosystem:	Software	Devel-
opment	in	the	Context	of	Adversarial	Behavior	(2017)	(Ph.D.	dissertation,	University	
of	 Pennsylvania),	 https://repository.upenn.edu/cgi/viewcontent.cgi?article=4019&	
context=edissertations	[https://perma.cc/G87G-JWR6].	
	 115.	 Due	to	the	level	of	specialization	required,	such	engineers	or	testers	are	con-
tracted	from	boutique	firms,	with	fees	comparable	to	those	of	high-end	lawyers.	This	
puts	many	well-performing	 service	 firms	outside	 the	price	 range	of	 the	majority	of	
transactional	script	developers.	See	ekotysh,	How	Much	Does	a	Smart	Contract	Audit	
Cost?,	 REDDIT	 (July	 24,	 2017,	 11:03	 PM),	 https://www.reddit.com/r/ethdev/com-
ments/6pdgvd/how_much_does_a_smart_contract_audit_cost	[https://perma.cc/	
GL7T-ATHS].	
	 116.	 OpenSSL,	one	of	the	most	scrutinized	software	packages	(and	which	underlies	
much	of	the	cryptography	used	to	secure	the	Internet),	has	disclosed	over	eleven	high-
severity	vulnerabilities	since	2014,	despite	having	been	created	prior	to	2002.	See	Vul-
nerabilities,	 OPENSSL,	 https://www.openssl.org/news/vulnerabilities.html	 [https://	
perma.cc/97CK-XMD5].	
	 117.	 Some	experts	estimate	the	density	of	bugs	is	10	to	50	bugs	per	KLOC	(1000	
lines	 of	 code).	 Even	Microsoft	with	 its	 sophisticated	development	practices	 still	 re-
leases	code	with	a	bug	density	of	~0.5	per	KLOC.	This	is	equivalent	to	tens-of-thou-
sands	of	bugs	in	a	modern	operating	system	compiled	from	tens-of-millions	of	lines	of	
code.	See	STEVE	MCCONNELL,	CODE	COMPLETE:	A	PRACTICAL	HANDBOOK	OF	SOFTWARE	CON-
STRUCTION	 652	 tbl.27-1	 (2d	 ed.	 2004),	 http://aroma.vn/web/wp-content/uploads/	
2016/11/code-complete-2nd-edition-v413hav.pdf	[https://perma.cc/9QXQ-NQVL]	
(showing	the	range	of	defect	densities).	
	 118.	 See	Clark,	supra	note	114,	at	74–75.	

346	 MINNESOTA	LAW	REVIEW	 [105:319	

	

These	 characteristics	 of	 the	 vulnerability	 life	 cycle	 pose	 chal-
lenges	 for	a	 transactional	 script	developer,	where	 there	are	 limited	
opportunities	for	safe	testing	on	a	live	blockchain	or	patching	ex	post.	
Worse,	the	semantics	of	the	Solidity	coding	language	in	which	almost	
all	 transactional	 scripts	are	written	are	 substantially	different	 from	
traditional	software	development,	leading	to	overconfident	develop-
ers	ignoring	potential	pitfalls	such	as	reentrancy	vulnerabilities	that	
are	not	present	in	most	coding	environments.119	

The	need	for	security	also	imposes	a	second,	more	metaphysical	
“complexity	tax:”	the	more	complex	a	transactional	script,	the	harder	
it	 is	to	preserve	both	the	coder’s	 intention	(and	the	intention	of	the	
person	hiring	the	coder	and	so	on),	while	not	creating	any	insecurities;	
more	development	 time	must	be	expended	to	shore	up	 the	code.120	
The	bigger	the	transactional	script	ship,	the	more	effort	must	be	ex-
pended	to	patch	the	leaks.		

E. SUMMARY	
A	recent	survey	of	script	developers	suggests	that	coders	are	be-

coming	 increasingly	 aware	 of	 the	 problematic	 real-world	 conse-
quences	 of	 how	Solidity	 interacts	with	development.121	Developers,	
many	of	whom	were	working	for	free,122	had	ideological	motives:	to	

	 119.	 Reentrancy	vulnerabilities	are	a	class	of	flaw	where	a	function	calls	another	
function	that	is	external	to	the	given	script,	and	that	callee	unexpectedly	calls	the	orig-
inal	 function	before	the	original	 function	has	finished	executing.	See	Known	Attacks,	
GITHUB,	 https://consensys.github.io/smart-contract-best-practices/known_attacks	
[https://perma.cc/FFR3-EWAU].	Programming	language	considerations	that	contrib-
ute	to	the	difficulty	of	developing	secure	and	correct	Solidity	code	include	the	potential	
for	“integer	overflow”	(where	the	size	of	numbers	exceeds	the	space	available	to	store	
them),	a	lack	of	support	for	decimal	numbers	and	incomplete	formal	specification	of	
the	language.	See	throwies11,	What	Are	the	Main	Security	Problems	Associated	with	So-
lidity	Language?,	REDDIT	(Jan.	18,	2018,	5:44	PM),	https://www.reddit.com/r/ethdev/	
comments/7rdocn/what_are_the_main_security_problems_associated	[https://	
perma.cc/V9R9-XZ5G].	
	 120.	 See	Yonghee	Shin,	Andrew	Meneely,	Laurie	Williams	&	Jason	A.	Osborne,	Eval-
uating	Complexity,	Code	Churn,	and	Developer	Activity	Metrics	as	Indicators	of	Software	
Vulnerabilities,	37	IEEE	TRANSACTIONS	ON	SOFTWARE	ENG’G	772,	772	(2010)	(expounding	
on	the	difficulties	of	finding	vulnerabilities	in	code).	
	 121.	 See	Amiangshu	Bosu,	Anindya	 Iqbal,	Rifat	Shahriyar	&	Partha	Chakraborty,	
Understanding	the	Motivations,	Challenges	and	Needs	of	Blockchain	Software	Develop-
ers:	A	Survey,	24	EMPIRICAL	SOFTWARE	ENG’G	2636,	2652	(2019).	
	 122.	 Id.	at	2644	(indicating	that	developers	reported	they	were	not	directly	com-
pensated).	

2020]	 TRANSACTIONAL	SCRIPTS	 347	

	

“create	a	decentralized	currency	that	cannot	be	manipulated	by	a	cen-
tral	authority.”123	That	is,	“removing	power	from	banks	and	govern-
ments.”124	These	were	motivated,	committed,	blockchain	proponents.	

But	the	survey	respondents	noted	that	the	above-mentioned	se-
curity	 concerns	 and	 high	 stakes	made	 coding	 difficult.	 “In	most	 .	.	.	
[non-blockchain	 projects]	when	 a	 bug	 appears,	 it	will	 be	 fixed	 and	
soon	 forgotten.	 But	 in	 blockchain	 projects	 some	 bugs	 can	 be	 very	
costly	and	never	forgotten.”125	Similarly,	some	complained	that	erro-
neous	 ledger	entries	are	“almost	 impossible”	 to	 fix.126	These	unique	
blockchain	 problems,	 when	 coupled	 with	 the	 decentralized	 VM	 on	
which	software	operates,	“makes	it	difficult	to	build	robust	software.	
Unreliable	connections,	unexpected	latency,	and	malicious	nodes	cre-
ate	a	hostile	production	environment.”127	There	are	also	few	produc-
tion-ready	tools	to	work	through	errors	in	scripts,	particularly	a	“reli-
able	and	user-friendly	decompiler.”128	

In	sum:	it’s	simply	impossible	to	create	perfect	software	the	first	
time	through,	and	existing	tools	to	pre-test	scripts	before	deployment	
are	inadequate	or	extremely	costly.	Irreducible	features	of	Ethereum	
(and	other	blockchains	designed	using	 the	 same	 logics)	will	 render	
transactional	scripts	buggy.	One	recent	study,	looking	only	at	the	very	
simple	ecosystem	of	scripts	on	Ethereum,	found	100	errors	per	1000	
lines	of	code.129	This	error	rate	likely	will	increase	as	developers	pur-
sue	ever-more-ambitious	Ethereum	projects.	As	bugs	accrue	and	cre-
ate	real-life	losses,	parties	will	turn	to	tribunals	and	to	the	law	for	re-
course.	In	the	next	section,	we	offer	some	concrete	examples	of	this	
insight.	

	 123.	 Id.	at	2650.	
	 124.	 Id.	
	 125.	 Id.	at	2652.	
	 126.	 Id.	
	 127.	 Id.	at	2650.	
	 128.	 Id.	at	2661.	
	 129.	 See	Peter	Vessenes,	Ethereum	Contracts	Are	Going	 to	Be	Candy	 for	Hackers,	
VESSENES	(May	18,	2016),	https://vessenes.com/Ethereum-contracts-are-going-to-be	
-candy-for-hackers	[https://perma.cc/RWK5-METY]	(“My	review	of	Ethereum	Smart	
Contracts	.	.	.	shows	a	likely	error	rate	of	something	like	100	per	1000,	maybe	higher.”);	
see	also	 Ivica	Nikolić,	Aashish	Kolluri,	 Ilya	Sergey,	Prateek	Saxena	&	Aquinas	Hobor,	
Finding	 the	 Greedy,	 Prodigal,	 and	 Suicidal	 Contracts	 at	 Scale	 (Mar.	 14,	 2018)	 (un-
published	 manuscript),	 ARXIV:	 1802.06038	 (finding	 a	 near	 3.5%	 vulnerability	 rate	
across	an	analysis	of	one	million	scripts);	Ludovica	Marchesi,	Michele	Marchesi	&	Rob-
erto	Tonelli,	ABCDE–Agile	Block	Chain	Dapp	Engineering	(Dec.	19,	2019)	(unpublished	
manuscript),	ARXIV:	1912.09074	(“The	feeling	of	many	software	engineers	about	such	
huge	interest	in	Blockchain	technologies	is	that	of	unruled	and	hurried	software	de-
velopment”).	

348	 MINNESOTA	LAW	REVIEW	 [105:319	

	

II.		TRANSACTIONAL	SCRIPTS	IN	THE	REAL	WORLD			
Now	that	we	have	in	hand	a	better	understanding	of	what	writing	

a	transactional	script	entails—and	where	error	might	creep	into	that	
process—let’s	consider	three	typical	use	cases	of	scripts	in	the	current	
blockchain	ecosystem.	

A. TOKENS	
A	basic	use	of	a	transactional	script	is	to	change	a	blockchain	rec-

ord	to	debit	a	cryptocurrency	from	a	single	address’	entry	and	credit	
the	entries	of	other	addresses.	However,	the	flexibility	of	the	EVM	al-
lows	 for	 more	 sophisticated	 types	 of	 trades,	 both	 of	 ether	 (the	
Ethereum-defined	base	currency)	and	script-defined	cryptoassets.130	

ERC-20	is	the	Ethereum	technical	standard	that	provides	a	tem-
plate	 for	 creating	 a	 fungible,	 tradeable	 asset,	 known	 as	 a	 token.131	
Such	tokens	are	the	most	common	cryptoasset.132	Token	balances	are	
not	stored	by	the	owner	of	the	token.	Instead,	the	transactional	script	
that	 created	 the	 asset	 updates	 an	 internal	 ledger	 of	 addresses	 and	
their	 corresponding	 token	balances.	Below	we	provide	 some	of	 the	
code	that	creates	such	tokens.	

	 130.	 See	Ethereum	Whitepaper,	 ETHEREUM,	 https://ethereum.org/en/whitepaper	
[https://perma.cc/LV92-E3HC]	(last	updated	July	9,	2020)	(indicating	that	Ethereum	
has	 the	 functionality	 to	not	only	process	debit	 transactions,	but	also	more	complex	
smart-contract	transactions	via	script).	
	 131.	 The	standard	requires	a	compliant	script	to	include	a	method	to	determine	
the	total	number	of	such	tokens	in	circulation,	the	number	of	tokens	owned	by	a	given	
address,	and	functions	that	facilitate	the	transfer	of	tokens.	See	ERC20,	BITCOIN	WIKI	
(Oct.	29,	2018,	7:46	AM),	https://en.bitcoinwiki.org/wiki/ERC20	[https://perma.cc/	
4Z28-3NS4].	
	 132.	 See	Jake	Frankenfield,	Crypto	Tokens,	INVESTOPEDIA	(June	30,	2020),	https://	
www.investopedia.com/terms/c/crypto-token.asp	[https://perma.cc/5PE9-7PZ7]	
(describing	the	popularity	of	crypto	tokens	as	derivatives	of	the	overarching	crypto-
currency	infrastructure).	

2020]	 TRANSACTIONAL	SCRIPTS	 349	

	

In	the	following	script	excerpt	the	variable	balances	serves	as	the	
script’s	 internal	 ledger	 of	 account	 balances.	 While	 any	 human	 can	
manually	inspect	the	ledger,	an	Ethereum	script	can	only	access	the	
balances	via	the	balanceOf()	function	which	outputs	the	balance	for	a	
given	address.	This	 includes	 the	 token	 script	 itself,	which	uses	bal-
anceOf	within	the	transfer	function	to	check	if	there	is	sufficient	bal-
ance	available	to	debit,	before	subtracting	that	amount	from	one	ad-
dress	and	crediting	to	another.	These	transfer	and	balance	functions	
are	depicted	in	the	graphic	below.	

By	limiting	direct	access	to	the	balances,	the	script	functions	like	
a	metaphorical	sealed	vault	of	a	novel	commodity,	with	a	correspond-
ing	public	ledger	determining	ownership	over	the	contents	to	differ-
ent	parties.	The	vault	allows	users	to	query	and	alter	the	ledger	only	
by	the	mechanisms	controlled	by	a	series	of	buttons	on	the	vault’s	ex-
terior.	 The	 buttons	 correspond	 to	 the	 functions	 that	 a	 given	 script	
makes	 available,	 and	 illustrate	 how	 even	with	 a	 transparent	 vault,	
control	over	and	ownership	of	 the	commodity	ultimately	 lies	 in	 the	
mechanism	underlying	 the	 buttons.	 Likewise,	 exchanges	 of	 a	 token	
can	only	be	effectuated	through	the	interface	provided	by	its	parent	
script.	In	the	above	example,	this	is	captured	by	the	transfer	function.	

While	a	secondary	script	may	layer	on	supplementary	terms	of	
an	exchange,	the	actual	transfer	of	ownership	is	mediated	through	the	
script	that	maintains	the	balances	variable	for	that	asset—no	matter	
the	rules	or	rituals	one	constructs	around	the	operation	of	the	afore-
mentioned	vault,	the	ledger	remains	under	the	sole	control	of	the	but-
ton	mechanisms.	Any	flaw	in	the	mechanism	is	therefore	propagated	
to	all	users	of	the	asset.	

mapping(address => uint256) balances;

function balanceOf(address tokenOwner) public

view returns (uint) {

return balances[tokenOwner];

}

function transfer(address receiver , uint

numTokens) public returns (bool) {

require(numTokens <= balances[msg.sender]);

balances[msg.sender] =

balances[msg.sender].sub(numTokens);

balances[receiver] =

balances[receiver].add(numTokens);

return true;

}

This variable

matches addresses

to their balance

balanceOf() out-

puts the balance

mapped to an address

transfer() first checks

that the sender’s

balance is su�cient.

It then subtracts

tokens from the

sender’s balance and

subsequently credits

them to the receiver’s

Figure	3:	Token	Script	

350	 MINNESOTA	LAW	REVIEW	 [105:319	

	

Consider	what	would	happen	were	the	coder	to	forget	the	check	
ensuring	 that	 adequate	 funds	were	 available.	 For	 one,	 a	 user	 could	
transfer	more	tokens	than	present	in	their	balance,	allowing	them	to	
accrue	more	tokens,	i.e.,	cryptoassets,	than	they	would	otherwise	be	
entitled.	Additionally,	any	other	script	using	the	asset	would	also	be	
affected	as	all	token	transfers	are	mediated	by	this	contract	that	main-
tains	and	controls	the	balance	variable.	

Of	 course,	 tokens	 are	 not	 merely	 technological	 artifacts.	 They	
take	their	value	from	social	consensus:	their	holders	must	think	they	
will	eventually	provide	some	utility	(even	if	merely	being	trading	in-
struments). 133 	To	 obtain	 that	 consensus,	 tokens	 are	 typically	 de-
scribed	and	marketed	with	natural	 language	text,	written	by	people	
who	may,	or	may	not,	have	coded	the	tokens’	scripts.	In	previous	work,	
we	examined	the	ERC-20	tokens	created	as	a	part	of	initial	coin	offer-
ings	in	2017.134		

Such	offerings,	 loosely	modeled	on	initial	public	offerings,	typi-
cally	 involve	 the	exchange	of	bitcoin	or	another	 form	or	 cryptocur-
rency	for	a	set	of	rights	embodied	in	a	transactional	script.135	For	ex-
ample,	an	organization	called	Kik	raised	$98M	in	2017	by	offering	for	
sale	 some	of	10	 trillion	 “Kin”	 tokens	 it	had	created.136	According	 to	
Kik’s	White	Paper,	thirty	percent	of	the	total	sale	proceeds	were	ear-
marked	 for	 “startup	 resources,	 technology,	 and	 a	 covenant	 to	 inte-
grate	with	the	Kin	cryptocurrency	and	brand.”137	Kik	could,	and	did,	
embed	these	promises	 in	a	 transactional	script.	We	found	that	on	a	
variety	of	measures,	Kik’s	marketing	documents	and	code	matched	ex-
actly.138		

Tokens—which	are	already	of	significant	practical	import—thus,	
pose	at	least	two	sorts	of	problems	for	jurists.	First,	what	if	the	code	

	 133.	 See	Hasu,	Unpacking	Bitcoin’s	Social	Contract,	MEDIUM	(Dec.	3,	2018),	https://	
medium.com/s/story/bitcoins-social-contract-1f8b05ee24a9	[https://perma.cc/	
6WQG-J2K2]	(explaining	the	import	of	social	contract	theory,	and	thus	social	consen-
sus,	in	the	appraisal	of	the	value	of	cryptocurrencies).	
	 134.	 See	Cohney	et	al.,	supra	note	2,	at	619–25.	
	 135.	 Id.	at	593–95.	
	 136.	 Khari	Johnson,	Kik	Raises	$98	Million	in	Kin	Cryptocurrency	Token	Sale,	VEN-
TUREBEAT	(Sept.	26,	2017,	8:07	AM),	https://venturebeat.com/2017/09/26/kik-raises	
-98-million-in-kin-cryptocurrency-token-sale	[https://perma.cc/EYA9-TN27].	
	 137.	 Cohney	et	al.,	supra	note	2,	at	628.	
	 138.	 Id.	at	673	app.B.	That	is	not	to	say	Kik	is	in	the	clear.	It	remains	enmeshed	in	
a	fight	with	the	SEC	about	whether	its	tokens	were	securities.	

2020]	 TRANSACTIONAL	SCRIPTS	 351	

	

itself	 is	 somehow	 flawed,	meaning	 that	 their	 buyers	 receive	 some-
thing	different	than	they	expected?	Second,	what	 if	 the	code	fails	to	
match	the	natural	language	promises	that	purport	to	describe	it?139		

B. EXCHANGES	
Sometime	on	November	15,	2018,	someone	placed	a	buy-offer	for	

a	token	called	“Free	Coin”	on	the	TokenStore	decentralized	cryptocur-
rency	exchange	at	 ten	 times	 the	prevailing	market	rate.140	This	cre-
ated	 a	 substantial	 arbitrage	 opportunity	 for	 an	 enterprising	 trader	
who	subsequently	purchased	Free	Coin	at	the	market	rate	and	resold	
it	at	the	inflated	rate,	realizing	a	profit	of	0.79ETH	or	$267	USD,	while	
paying	a	complexity	fee	of	$5.00.141	Wishing	to	ensure	that	the	entire	
sequence	 of	 trades	 was	 completed,	 the	 second	 trader	 batched	 the	
transactions	using	a	script	guaranteed	to	complete	both	the	buy	and	
sell	trades,	or	neither.142		

This	series	of	events	is	normal	on	digital	marketplaces	that	trade	
cryptocurrency.	Such	marketplaces	today	are	a	major	source	of	liquid-
ity	for	cryptoassets,	and	consequently	the	most	practically	important	
public	 face	 of	 the	 transactional	 script	 commercial	 ecosystem.143	In-
deed,	they	may	be	the	only	fora	where	it	is	obvious	that	transactional	
scripts	are	pragmatically	important	mechanisms	of	exchange.	Crypto-
currency	exchanges	take	multiple	approaches	to	custody,	settlement,	
and	order	matching,	which	we	now	explore.	

Unlike	 the	 “Free	 Coin”	 trade,	 the	 majority	 of	 cryptocurrency	
trades	currently	occur	on	centralized	exchanges.144	Users	send	either	
fiat	currency	or	cryptocurrencies	to	an	account	controlled	by	the	ex-
change,	and	in	return,	the	exchange	promises	to	(and	normally	does)	

	 139.	 See	 Complaint	 at	 13,	 SEC	 v.	 REcoin	 Grp.	 Found.,	 L.L.C.,	 No.	 17-CV-5725	
(E.D.N.Y.	Sept.	29,	2017)	(alleging	securities	liability	due	to	REcoin’s	whitepaper	mak-
ing	representations	about	charitable	giving	for	which	“there	is	no	program	code”).	
	 140.	 Philip	 Daian,	 Steven	 Goldfeder,	 Tyler	 Kell,	 Yunqi	 Li,	 Xueyuan	 Zhao,	 Iddo	
Bentov,	Lorenz	Breidenbach	&	Ari	Juels,	Flash	Boys	2.0:	Frontrunning,	Transaction	Re-
ordering,	and	Consensus	Instability	 in	Decentralized	Exchanges	1,	4	(Apr.	10,	2019)	
(unpublished	manuscript),	ARXIV:	1904.05234.	
	 141.	 The	fee	was	113,265	gas	at	a	price	of	134	Gwei,	or	about	$5.	Id.	at	5.	
	 142.	 Id.	
	 143.	 See	generally	Andrea	Pinna,	Simona	 Ibba,	Gavina	Baralla,	Roberto	Toneli	&	
Michel	Marchesi,	A	Massive	Analysis	of	Ethereum	Smart	Contracts	Empirical	Study	and	
Code	Metrics,	7	IEEE	ACCESS	78,194,	78,202–06	(2019).	
	 144.	 See	 Nathan	 Reiff,	 What	 Are	 Centralized	 Cryptocurrency	 Exchanges,	 IN-
VESTOPEDIA	 (June	 25,	 2019),	 https://www.investopedia.com/tech/what-are	
-centralized-cryptocurrency-exchanges	 [https://perma.cc/7D56-QPX5]	 (“[Central-
ized	cryptocurrency	exchanges]	are	the	most	common	means	that	investors	use	to	buy	
and	sell	cryptocurrency	holdings.”).	

352	 MINNESOTA	LAW	REVIEW	 [105:319	

	

promptly	transfer	an	equivalent	amount	of	a	requested	asset.145	Such	
trades	 almost	 always	 occur	 off-chain	 and	 are	 settled	 using	 the	 ex-
change’s	 internal	 ledgers.146	Exchanges	 do	 generally	 offer	 custodial	
“wallets”	that	store	the	keys	to	a	user’s	cryptoassets	for	easy	trading.	

These	centralized	exchanges	could,	but	in	most	cases	do	not,	use	
transactional	scripts.147	Rather,	they	act	as	market	makers,	facilitating	
trades	between	two	parties	for	whom	it	is	the	custodian.	There	is	thus,	
good	reason	to	assume	that	trades	between	such	parties	are	governed	
by	ordinary	contracts	law.		

The	trend,	however,	is	towards	decentralized	models	for	crypto-
currency	 exchanges.148	Collapses	 of	 centralized	 exchanges	 have	 left	
users	without	access	to	balances	stored	on	the	exchange.149	Central-
ized	exchanges	have	also	suffered	for	lack	of	liquidity	across	rarer	as-
set	types,	as	exchanges	compete	for	order	flow.150	These	flaws,	com-
bined	 with	 the	 blockchain	 community’s	 ideological	 opposition	 to	
centralization,	provided	fertile	ground	for	the	development	of	decen-
tralized	exchanges,151	or	DEXes.	

TokenStore,	a	DEX,	did	not	automatically	match	 trades	 in	 their	
order	book.	Rather,	sellers	of	assets	would	post	an	order	and	buyers	
would	digitally	sign	 their	 intent	 to	match	 the	order,	 forwarding	 the	
transaction	to	the	DEX’s	on-chain	contract,	which	provided	for	a	0.3%	
payment	allotted	to	TokenStore.	This	is	a	common	setup	for	DEX	sys-
tems	today.152	The	service	provided	in	this	instance	can	be	viewed	as	

	 145.	 See	id.	(explaining	the	idea	of	centralization).	
	 146.	 Note	these	are	not	ledgers	in	the	blockchain	chain	but	merely	the	exchange’s	
own	internal	record	keeping	mechanisms.	
	 147.	 Cf.	id.	(noting	that	a	crucial	difference	between	centralized	and	decentralized	
exchanges	is	the	use	of	intermediaries	and	custodians).	
	 148.	 While	trades	on	decentralized	exchanges	are	still	of	comparatively	low	vol-
ume,	the	bulk	of	new	exchanges	are	adopting	decentralized	models.	
	 149.	 Mt.	Gox,	notable	for	its	2014	collapse,	handled	as	much	as	70%	of	all	Bitcoin	
transactions	prior	to	its	demise.	See	Josh	Constine,	The	Plot	to	Revive	Mt.	Gox	and	Repay	
Victims’	Bitcoin,	TECHCRUNCH	(Feb.	6,	2019,	8:00	PM),	https://techcrunch.com/2019/	
02/06/the-plot-to-revive-mt-gox-and-repay-victims-bitcoin	[https://perma.cc/	
79JU-49KX].	
	 150.	 See	Nathan	Sexer,	State	of	Decentralized	Exchanges,	2018,	CONSENSYS	MEDIA	
(Jan.	31,	2018),	https://media.consensys.net/state-of-decentralized-exchanges-2018	
-276dad340c79	[https://perma.cc/94KS-AJLT].	
	 151.	 Despite	the	allure,	the	term	“decentralized	exchange”	was	long	somewhat	of	
a	misnomer,	as	earlier	generations	still	relied	on	a	single	contract	for	market	making	
and	settlement.	
	 152.	 An	explanation	of	similar	architectures	and	the	costs	they	impose	is	provided	
by	Iddo	Bentov,	Lorenz	Breidenbach,	Phil	Daian,	Ari	Juels,	Yunqi	Li	&	Xueyuan	Zhao,	
The	Cost	of	Decentralization	in	0x	and	EtherDelta,	HACKING,	DISTRIBUTED	(Aug.	13,	2017,	

2020]	 TRANSACTIONAL	SCRIPTS	 353	

	

two	separable	components:153	a	listing	service	for	open	orders,	and	a	
platform	 to	 automatically	 consummate	 signed	 trades.	 Each	 compo-
nent	is	mediated	by	a	different	piece	of	software.	The	order	book	is	
maintained	by	a	centralized	database,	and	interaction	with	it	is	by	a	
website	and	its	accompanying	interfaces,	both	controlled	by	Token-
Store.	

The	consummation	component	is	managed	by	a	minimal	transac-
tional	script.	To	perform	a	trade,	users	first	place	cryptoassets	in	the	
custody	of	the	transactional	script	using	a	deposit	function.	A	trader	
wishing	to	match	an	order	then	uses	the	web	interface	to	generate	a	
signed	transaction	and	submits	it	to	the	trade()	function	in	the	trans-
actional	script.	The	script	performs	a	number	of	checks	to	ensure	that	
the	trade	is	valid	and	then	updates	the	balances	of	both	users.	

In	the	case	of	our	poor	trader,	once	the	trade	was	entered	into	the	
order	book,	 any	counterparty	 could	 force	 its	execution.	TokenStore	
appears	to	lack	either	a	whitepaper	or	any	substantive	formalization	
in	natural	language	of	their	system	architecture.	Its	website	contains	
no	 link	 to	 a	 terms	 and	 conditions,	 and	 even	 their	 medium	 blog	 is	
sparely	populated	with	only	eight	posts,	with	fully	half	being	merely	
launch	announcements.	

The	natural	language	content	surrounding	TokenStore	is	limited	
to	a	handful	of	tweets,	blog	posts,	commit	messages,	and	code	com-
ments,	which	yield	only	modest	insight	into	the	purported	offering.	A	
medium	post	entitled	“Advantages	of	token.store	ETH—Summarized”	
touts	the	security	of	the	platform	claiming	“token.store	doesn’t	hold	
any	 of	 your	 funds;	 the	 trader	 deposits	 his	 funds	 into	 a	 smart	 con-
tract	This	makes	 the	experience	safe	and	secure	by	 its	very	na-
ture”	and	directs	users	to	a	link	to	“check	the	code.”154	On	Twitter,	the	
project	bragged	that	“[f]unds	at	[http://]token.store	ETH	and	EOS	are	

1:45	PM),	http://hackingdistributed.com/2017/08/13/cost-of-decent	[https://	
perma.cc/U79S-XE86].	
	 153.	 This	separation	is	justified	by	noting	that	a	DEX	could	build	a	platform	com-
patible	with	a	rival’s	signed	transactions,	using	its	own	contract	to	consummate	trades.	
TokenStore	 itself	 appears	 to	 have	 added	 support	 for	 transactions	 originating	 from	
“0x,”	 another	popular	DEX.	TokenDev,	Tokenstore/Contract,	GITHUB	(July	24,	2018),	
https://github.com/tokenstore/contract/pull/11	[https://perma.cc/34HB-8YW6]	
(announcing	an	expansion	allowing	users	to	take	0x	orders).	
	 154.	 Harry	Birch,	Advantages	of	Token.Store	ETH—Summarized,	MEDIUM	(Aug.	27,	
2018),	https://medium.com/token-store/advantages-of-the-token-store	
-summarized-9164c4bab41	[https://perma.cc/KF8F-HX8H].	

354	 MINNESOTA	LAW	REVIEW	 [105:319	

	

held	 in	smart	contracts:	only	users	who	hold	 the	private	key	 to	 the	
wallet	which	deposited	them	can	withdraw	them.”155	

Of	direct	relevance	to	trading	error,	the	code	controlling	trade	ex-
ecution	is	preceded	by	the	following	code	comment:	

Note:	Order	creation	happens	off-chain	but	the	orders	are	signed	by	creators,	
//	we	validate	the	contents	and	the	creator	address	in	the	logic	below.156	
The	notion	that	TokenStore	“validates”	the	contents	of	an	order	

prior	to	fulfillment	leaves	open	the	question	of	what	validation	a	non-
code-reading	user	ought	to	expect.	We	return	to	these	issues	in	Sec-
tion	III.	

C. ORACLES	
In	their	default	setting,	transactional	scripts	are	unable	to	inter-

act	with	events	occurring	or	data	outside	of	the	blockchain.	Consider	
a	transactional	script	that	pays	a	shipper	so	long	as	the	temperature	
within	the	shipping	container	stays	below	a	certain	threshold.	While	
the	 logic	 is	 simple	 (if	 the	 temperature	never	went	above	X,	pay	 the	
contract	price),	the	quandary	for	the	coder	is	how	to	ensure	that	the	
transactional	script	knows	what	the	temperature	inside	the	container	
is.	This	problem	is	solved	using	an	“oracle,”	a	computerized	agent	that	
periodically	submits	the	needed	external	data	to	the	blockchain	to	be	
used	within	contracts.157	

	 155.	 token.store	(@TokenDotStore),	TWITTER	(June	22,	2019,	11:32	AM),	https://	
twitter.com/TokenDotStore/status/1142470315777363968	[https://perma.cc/	
TY3W-G64V].	 Of	 note,	 the	 script	 is	 upgradable	 via	 an	 opt-in	 process,	meaning	 that	
while	TokenStore	currently	has	no	way	to	access	user	assets,	a	future	version	of	the	
contract	certainly	could.	Though	TokenStore	has	delisted	a	number	of	tokens	from	its	
order	 book	 and	 user	 interface,	 individuals	 who	 have	 delisted	 tokens	 stored	 in	 the	
transactional	script	can	still	access	them	by	manually	submitting	a	withdraw	transac-
tion	 to	 the	 blockchain.	See	 token.store	 (@TokenDotStore),	 TWITTER	 (Nov.	 15,	 2018,	
11:46	AM),	https://twitter.com/TokenDotStore/status/1063126115290615808	
[https://perma.cc/E4VK-DK4T].	
	 156.	 Block	Explorer	 for	Ethereum	Mainnet,	ANYBLOCK	ANALYTICS,	https://explorer	
.anyblock.tools/ethereum/ethereum/mainnet/address/0xE17dBB844Ba602E18988	
9D941D1297184ce63664	 [https://perma.cc/QB8N-QDJN]	 (last	 modified	 July	 6,	
2020).	
	 157.	 Incorporating	external	data	directly	onto	the	chain	undermines	the	consensus	
mechanism,	as	it	leaves	no	principled	way	for	network	participants	without	direct	ac-
cess	to	the	external	data	to	validate	its	correctness.	See	Alexander	Egberts,	The	Oracle	
Problem:	An	Analysis	of	How	Blockchain	Oracles	Undermine	the	Advantages	of	Decen-
tralized	Ledger	Systems	5	(Dec.	12,	2017)	(M.A.	thesis,	EBS	University	of	Business	and	
Law),	https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3382343	[https://	
perma.cc/JW5E-UHJP].	

2020]	 TRANSACTIONAL	SCRIPTS	 355	

	

An	oracle	normally	consists	of	two	parts:	a	script	and	a	way	to	
populate	the	script’s	data	store.158	The	figure	below	excerpts	from	the	
oracle	for	a	currency	exchange	called	Synthetix,	showing	a	portion	of	
the	 function	 that	 incorporates	 updates	 to	 currency	 exchange	 rates	
onto	the	script’s	storage.	

	 158.	 Oracles	can	exist	in	software	or	hardware,	with	the	latter	purportedly	offering	
some	 security	 guarantees	 stemming	 from	 the	 increased	 difficulty	 of	 compromising	
hardware.	

function internalUpdateRates(bytes4 []

currencyKeys , uint[] newRates , uint

timeSent) internal returns(bool) {

require(currencyKeys.length ==

newRates.length , "Currency key array

length must match rates array length.");

require(timeSent < (now +

ORACLE_FUTURE_LIMIT), "Time is too far

into the future");

// Loop through each key and perform update.

for (uint i = 0; i < currencyKeys.length;

i++) {

// Should not set any rate to zero ever ,

as no asset will ever be

// truely worthless and still valid. In

this scenario , we should

// delete the rate and remove it from

the system.

require(newRates[i] != 0, "Zero is not a

valid rate , please call delegateRate

instead.");

require(currencyKeys[i] != "sUSD", "Rate

of sUSD cannot be updated , it’s

always UNIT.");

// We should only update the rate if

it’s at least the same age as the

last rate we’ve got.

if (timeSent <

lastRateUpdateTimes[currencyKeys[i]])

{

continue;

}

newRates[i] =

rateOrInverted(currencyKeys[i],

newRates[i]);

// Ok , go ahead with the update.

rates[currencyKeys[i]] = newRates[i];

lastRateUpdateTimes[currencyKeys[i]] =

timeSent;

}

emit RatesUpdated(currencyKeys , newRates);

// Now update our XDR rate.

updateXDRRate(timeSent);

return true;

}

The function takes
as input a set of

exchange rates and
currency pairs, along
with the current time

The function performs
the following process
for each currency pair:

1. Check if the last update was
far enough in the past to
require a new update

2. Invert the rate if required

3. Update the script with the
new rate and reset the up-
date timer

Figure	4:	Oracle	Script	from	Synthetix	

356	 MINNESOTA	LAW	REVIEW	 [105:319	

	

As	 shown	 above,	 to	 execute	 the	 update	 function,	 the	 program	
must	provide	as	input	the	data	it	wishes	to	incorporate.	Notably,	with	
each	update	a	gas	fee	must	be	paid	to	store	the	new	data.	Oracles	are	
thus	not	immune	from	the	challenges	associated	with	the	complexity	
tax.		

The	data	from	oracles	is	typically	provided	by	a	third-party.	This	
highlights	 a	 significant	 trade-off:	 oracles	 require	 trust	 in	 the	 data	
source	(and	further	in	the	soundness	of	the	oracle	script).159	For	some,	
the	 intermediation	and	 trust	 reintroduced	by	oracles	highlights	 the	
“oracle	 paradox”:	 the	 more	 relevant	 the	 oracle	 data,	 the	 less	 one	
should	be	willing	to	trust	the	provider.160	There	are	a	number	of	in-
genious	protocol	designs	that	achieve	to	tweak	these	trade-offs.161	

But	oracles	break	down	despite	the	best	intentions	of	all	involved.	
For	example,	on	June	25,	2019,	one	of	the	commercial	data	feeds	from	
which	Sythnetix	receives	its	USD/KRW	(Korean	Won)	exchange	rate	
“began	to	intermittently	report	a	price	1000x	higher	than	the	current	
rate.”162	An	earlier	outage	had	taken	one	of	the	other	two	data	sources	
offline,	 and	 the	 code	 to	 disregard	 outliers	 averaged	 the	 remaining	
feeds	was	also	buggy.	For	a	 script	operating	a	market	 for	 synthetic	
cryptoassets,	tied	to	real	world	assets,	a	mismatch	between	the	syn-
thetic	asset	and	the	underlying	asset	was	the	worst-case	scenario.	

	 159.	 Federated	oracles	attempt	to	tackle	this	trust	problem	by	distributing	it:	they	
require	that	a	small	number	of	parties	independently	provide	the	same	information.	
The	transactional	script	validates	that	the	information	it	received	is	consistent	across	
each	parties’	submission	before	it	permits	the	data	to	be	used.	Such	an	approach	is	no	
guarantee	that	a	series	of	bugs	won’t	cause	the	overall	failure	of	the	system.	
	 160.	 See	Jesus	Rodriguez,	The	Middleman	of	Trust:	The	Oracle	Paradox	and	Five	Pro-
tocols	that	Can	Bring	External	Data	into	the	.	.	.	,	HACKERNOON	(July	31,	2018),	https://	
hackernoon.com/the-middleman-of-trust-the-oracle-paradox-and-five-protocols	
-that-can-bring-external-data-into-the-df39b63e92ae	[https://perma.cc/N3SJ-FFJG].	
	 161.	 Decentralized	oracle	protocols	(such	as	Chainlink)	provide	networks	of	indi-
vidual	oracles	along	with	incentive	structures	that	promote	trust	in	the	network.	See,	
e.g.,	Welcome	to	Chainlink,	CHAINLINK	DEVS.,	https://web.archive.org/web/201912280	
52855/https://docs.chain.link/docs/welcome-to-chainlink	[https://perma.cc/6XZB	
-VB8S].	 An	 alternative	 solution	 operated	 by	 Augur	 maintains	 a	 prediction	 market	
which	syncs	to	off-chain	events	by	maintaining	a	fee	pool	paid	out	to	participants	that	
report	on	the	state	of	the	off-chain	world.	See	Jack	Peterson,	Joseph	Krug,	Micah	Zoltu,	
Austin	Williams	&	Stephanie	Alexander,	Augur:	A	Decentralized	Oracle	and	Prediction	
Market	Platform	(Feb.	3,	2018)	(unpublished	manuscript),	ARXIV:	1501.01042.	Amus-
ingly,	a	participant	can	disrupt	the	market	by	placing	a	self-referential	bet	on	Augur	
itself.	
	 162.	 Synthetix	 Response	 to	 Oracle	 Incident,	 SYNTHETIX	 (June	 25,	 2019),	 https://	
blog.synthetix.io/response-to-oracle-incident	[https://perma.cc/KEQ9-CKTP].	

2020]	 TRANSACTIONAL	SCRIPTS	 357	

	

A	bot	was	able	to	detect	the	mismatched	exchange	rate	and	took	
advantage	of	the	arbitrage	opportunity,	acquiring	tokens	with	a	mar-
ket	 value	 of	 $1b	with	 a	mere	 $1000	 investment.163	Fortunately	 for	
Synthetix,	 the	 bot	 owner	 reversed	 the	 trades	 in	 return	 for	 a	 bug	
bounty	payout.	The	chain	indicates	the	reversal	was	achieved	through	
a	subsequent	trade	at	an	exchange	rate	between	an	sETH	(tokenized	
ETH)	and	sKRW	(tokenized	KRW)	many	orders	of	magnitude	below	
the	 actual	 rate. 164 	This	 suggests	 cooperation	 between	 Synthetix	
(which	would	have	been	able	to	manually	adjust	the	exchange	rate)	
and	the	bot	owner	who	willingly	converted	their	sETH	below	market	
rate.	While	the	on-chain	transactions	suggest	that	the	bot	owner	lost	
their	investment	(along	with	their	profits)	in	the	reverse	transaction,	
this	was	likely	remediated	through	a	side	payout.	

We	previously	showed	a	script	by	which	Synthetix	incorporated	
various	 exchange	 rates.	 As	with	 our	 previous	 examples,	 that	 script	
was	accompanied	by	natural	language	text,	which	provided	the	oppor-
tunity	for	gaps	between	intention	and	outcome.	The	top	of	the	file	in-
cluded	the	following	description	of	its	function:	

[This	is	a]	contract	that	any	other	contract	in	the	Synthetix	system	can	query	
for	the	current	market	value	of	various	assets,	including	crypto	assets	as	well	
as	various	fiat	assets.	
This	contract	assumes	that	rate	updates	will	completely	update	all	rates	to	
their	current	values.	If	a	rate	shock	happens	on	a	single	asset,	the	oracle	will	
still	push	updated	rates	for	all	other	assets.165	
Alongside	 extensive	 code	 commentary,	 Synthetix	makes	 repre-

sentations	as	to	the	 functionality	of	 its	platform	in	the	README	ac-
companying	 the	 code,	 in	 the	help	 section	of	 its	webpage,	 and	 in	 its	
marketing	materials.166	None	of	those	commentary	documents	refer-
ences	the	possibility	of	an	error	at	the	data	source.	The	README	file,	

	 163.	 For	information	on	the	exchange	of	ETH	used	to	take	advantage	of	the	arbi-
trage	 opportunity,	 see	 Transaction	 Details,	 ETHERSCAN	 (June	 17,	 2019,	 9:04	 AM),	
https://etherscan.io/tx/0x6f6ee43ee07013503df786532493a3c405465f91e3ce8bb
4ba8717a715db1caa	[https://perma.cc/3B39-V7X3].	
	 164.	 This	was	deduced	by	following	the	chain	of	transactions	with	an	exchange	of	
37m	sETH	for	362	sKRW.	Transaction	Details,	ETHERSCAN	 (June	25,	2019,	2:54	AM),	
https://etherscan.io/tx/0xc3fc19c63e1090eb624212bad71a27cd3dc7afcd0cf9063d
24bfc47b5d036ae2	[https://perma.cc/R52W-HKZF].	
	 165.	 Contract,	ETHERSCAN,	https://etherscan.io/address/0x70c629875dadbe7024	
89a5e1e3baae60e38924fa#code	[https://perma.cc/VX3Y-56FR].	
	 166.	 The	webpage	does	include	a	link	to	terms	and	conditions,	but	they	govern	use	
of	the	website	rather	than	the	blockchain	platform.	Terms	of	Use,	SYNTHETIX,	https://	
www.synthetix.io/terms-of-use	 [https://perma.cc/8GCH-9BAK]	 (“By	 accessing	 the	
website	at	http://synthetix.io,	you	are	agreeing	to	be	bound	by	these	terms	In	no	
event	shall	Synthetix	.	.	.	be	liable	for	any	damages	.	.	.	arising	out	of	the	use	or	inability	
to	use	the	materials	on	Synthetix’s	website”).	

358	 MINNESOTA	LAW	REVIEW	 [105:319	

	

however,	notes	that	the	fees	are	governed	by	an	exchange	rate	that	is	
“derived	by	looking	at	a	basket	aggregate	of	currencies,”	that	the	rates	
will	be	not	be	“stale”	and	that	the	oracle	will	be	“trusted.”167	And	the	
MIT	License	for	the	Synthetix	software,	which	is	provided	as	a	file	on	
its	Github	page,	states	that	the	software	is	provided	“AS	IS.”168	How	to	
compile	these	various	statements	is	the	subject	of	our	next	Section.	

III.		SCRIPTS	AND	STACKS			
As	we	explored	above,	it	simply	is	not	practical	to	create	scripts	

that	perfectly	embody	their	coders’	intent.	The	point	is	generally	true	
for	all	coded	exchange.	A	2019	decision	issued	by	the	Singapore	Inter-
national	Commercial	Court,	 applying	 the	 common	 law	of	 Singapore	
(itself	 derived	 from	English	 common	 law),	 offers	 a	 unique	window	
into	how	jurists	might	resolve	the	contractual	consequences	of	code	
gone	awry.169	

The	case	involved	a	lopsided	trade	of	cryptocurrency.	Quoine	op-
erated	a	centralized	currency	exchange	platform	that	primarily	ena-
bled	trading	of	cryptocurrencies.170	B2C2	was	an	“electronic	market	
marker,”	which	had	developed	a	trading	algorithm	written	by	its	pres-
ident	 several	 years	 before	 the	 events	 of	 the	 case.171	In	 April	 2017,	
Quoine,	as	it	always	did,	had	a	program	in	place	to	monitor	users	who	
had	borrowed	collateral	with	which	to	trade.172	When	Quoine’s	pro-
gram	identified	an	imbalance	in	the	reserves,	it	forced	the	sale	of	col-
lateralized	assets	at	the	best	available	price.173	

Unfortunately,	the	program	that	Quoine	had	written	to	ensure	a	
liquid	market	temporarily	failed.174	The	result	was	its	prices	were	out	
of	sync	with	the	global	market.175 B2C2,	whose	goal	was	to	capture	re-
turns	from	the	bid-ask	spread,176	offered	to	fill	seven	particular	orders	

	 167.	 Oikos	 Contracts,	 GITHUB,	 https://github.com/oikos-cash/oikos#oikos-tron	
-contracts	[https://perma.cc/9CME-PC2E]	(last	modified	Aug.	11,	2020).	
	 168.	 MIT	 License,	 GITHUB	 (Nov.	 29,	 2018),	 https://github.com/Synthetixio/	
synthetix/blob/8f3b95d1205f2b4d6b62124bd07f593773800743/LICENSE	[https://	
perma.cc/Q2PX-46T7].	
	 169.	 B2C2	Ltd.	v.	Quoine	Pte.	Ltd.	[2019]	SGHC	(I)	03.	
	 170.	 Id.	at	1.	
	 171.	 Id.	
	 172.	 Id.	at	12.	
	 173.	 Id.	
	 174.	 Id.	
	 175.	 Id.	
	 176.	 Id.	at	5.	

2020]	 TRANSACTIONAL	SCRIPTS	 359	

	

at	a	price	around	250	times	that	available	on	the	broader	market,	mak-
ing	it	a	quick	profit	of	several	million	dollars.177	

The	next	 day,	Quoine	 reversed	 the	 trades	 in	 its	 order	 book.178	
B2C2	sued,	arguing	that	the	reversal	violated	Quoine’s	terms	and	con-
ditions,	which	provided	that	“once	an	order	is	filled,	you	are	notified	
via	the	Platform	and	such	an	action	is	irreversible.”179	

Quoine	offered	two	principal	defenses	to	its	supposed	obligation	
to	complete	the	trades	with	B2C2.180	

First,	 it	pointed	out	that	its	risk	disclosure	statement,	uploaded	
prior	to	the	trade	but	not	expressly	incorporated	into	the	terms	and	
conditions,	 permitted	 a	 reversal	 of	 trades	 if	 “market	 circumstances	
shift	dramatically	or	something	else	happens.”181	The	court	held	that	
because	the	statement	was	not	expressly	incorporated	into	the	con-
tract	(that	 is,	 into	the	terms	and	conditions),	 it	did	not	override	the	
express	 language	 of	 the	 contract	 itself.182	This	 decision	 seems	 per-
fectly	sensible	on	its	face—an	application	of	the	usual	idea	that	an	in-
tegrated	 agreement	 ought	 not	 be	 contradicted	 by	 extrinsic	 state-
ments.183	

Second,	and	more	interestingly,	the	court	considered	whether	the	
facts	established	a	mistake,	allegedly	because	 the	parties	would	not	
themselves	 have	 executed	 the	 trade	 in	 a	 hypothetical	world	where	
they	 talked	 about	 it	 in	 person	 in	 real	 time.184 	That	 is,	 the	 parties’	
agents—the	programs—had	executed	a	deal	which,	though	an	accu-
rate	expression	of	the	code’s	instructions,	somehow	failed	to	capture	
their	 “real	 intent.”185	As	 Quoine	 argued,	 the	 platforms	were	 “really	
complex	platforms,”	in	which	“a	lot	of	things	[could]	go	wrong.”186	The	
mistake	in	question	was	not	a	typographical	error	in	the	code,	but	ra-
ther	an	“oversight	 in	 the	design	of	 the	system.”187	Quoine	asked	the	

	 177.	 Id.	at	12.	
	 178.	 Id.	
	 179.	 Id.	at	55.	
	 180.	 Id.	at	58.	
	 181.	 Id.	at	64.	
	 182.	 Id.	at	73.	
	 183.	 For	this	point,	the	tribunal	cited	a	British	treatise	and	supporting	Singaporean	
authorities,	but	the	result	would	be	no	different	in	most	U.S.	jurisdictions.	See	id.	at	69;	
infra	text	accompanying	notes	271–72.	
	 184.	 B2C2	Ltd.	[2019]	SGHC	(I)	03,	at	75.	
	 185.	 See	 generally	 1	 TIMOTHY	MURRAY,	CORBIN	 ON	CONTRACTS:	FORMATION	 OF	CON-
TRACTS	§	4.11	(rev.	ed.	2020)	(describing	old	cases	on	telegraphs	and	mistakes	in	trans-
mission	of	messages).	
	 186.	 B2C2	Ltd.	[2019]	SGHC	(I)	03,	at	30.	
	 187.	 Id.	

360	 MINNESOTA	LAW	REVIEW	 [105:319	

	

court	to	apply	a	“pragmatic	and	judicious	stance”	and	void	a	“clearly	
erroneous	trade.”188	

The	tribunal,	adopting	a	narrower	reading	of	unilateral	mistake	
derived	from	British	common	law,	held	that	to	avoid	liability,	the	per-
son	who	was	not	mistaken	must	have	actually	known	of	her	counter-
party’s	error	and	“was	shutting	her	mind	to	the	obvious.”189	In	decid-
ing	whether	B2C2	had	 that	 requisite	 state	of	mind,	 the	court	noted	
conceptual	difficulties:	

	 	 [A]pplying	the	law	to	.	.	.	algorithmic	trading	.	.	.	raise[s]	new	questions.	
What	mistakes	have	been	made	and	to	what	extent	are	they	fundamental?	
How	does	one	assess	knowledge	or	 intention	when	the	whole	operation	is	
carried	out	by	computers	acting	as	programmed?	Whose	knowledge	is	rele-
vant?	At	what	date	is	this	knowledge	to	be	assessed?190	
Given	that	the	program	executed	a	fixed	trade—i.e.,	the	design	of	

the	code	bespoke	the	programmer’s	intention	to	strip	it	of	any	discre-
tion—the	court	analogized	the	program	to	a	“mere	machine	carrying	
out	actions	which	 in	another	age	would	have	been	carried	out	by	a	
suitably	trained	human.	[It	is]	no	different	[from]	.	.	.	a	kitchen	blender	
relieving	a	cook	of	the	manual	act	of	mixing	ingredients.”191	

The	court	thus	held	that	for	the	purposes	of	ascertaining	mistake,	
it	would	focus	on	the	intent	of	“the	person	on	whose	behalf	the	com-
puter	 placed	 the	 order	 in	 question	 [B2C2].” 192 	This,	 the	 court	 ex-
plained,	required	examining	the	“state	of	mind	of	the	programmer	of	
the	software	of	that	program	at	the	time	the	relevant	part	of	the	pro-
gram	was	written.”193	Assessing	the	relevant	evidence,	the	court	de-
cided	that	the	programmer	had	not	inserted	code	intending	to	trade	
at	lopsided	rates	or	knowing	that	doing	so	could	only	result	from	the	
counterparties’	error.194	Thus,	it	rejected	the	claim	of	mistake.195	

Quoine	is	not	a	case	about	a	transactional	script	gone	wrong.	But	
it	does	offer	a	few	glimpses	into	the	future	of	how	scripted	exchanges	
will	be	resolved,	or	at	least	one	possible	approach	to	such	problems.	

	 188.	 Id.	at	79.	
	 189.	 Id.	at	80;	cf.	RESTATEMENT	(SECOND)	OF	CONTS.	§	153	(AM.	L.	INST.	1981)	(requir-
ing	the	non-mistaken	party	to	have	“had	reason	to	know	of	the	mistake”).	
	 190.	 B2C2	Ltd.	[2019]	SGHC	(I)	03,	at	86.	
	 191.	 Id.	at	89.	
	 192.	 Id.	at	87–88.	
	 193.	 Id.	at	89–90.	
	 194.	 Id.	at	99.	
	 195.	 Id.	In	2020,	the	Singapore	Supreme	Court	affirmed	the	judgment	in	an	opinion	
that	was	equally	lengthy	but	broke	no	new	conceptual	ground.	Quoine	Pte.	Ltd.	v.	B2C2	
Ltd.	 [2020]	 SGCA	 (I)	 02,	 https://www.supremecourt.gov.sg/docs/default-source/	
module-document/judgement/-2020-sgca(i)-02-(v-4)-pdf	[https://perma.cc/7LF2	
-HY2V].	

2020]	 TRANSACTIONAL	SCRIPTS	 361	

	

The	first	is	the	importance	of	the	role	that	old-fashioned	contract	
law—and	old-fashioned	contracts—will	play	in	the	disposition	of	the	
parties’	 legal	 rights.	The	Quoine	 tribunal	privileged	 the	natural	 lan-
guage	contract	embodied	in	the	terms	and	conditions	over	the	code.	
Though	 it	 ultimately	 declared	 that	 the	 risk	 disclosures	 outside	 the	
terms	and	conditions	were	not	binding,	it	apparently	would	have	en-
forced	those	disclosures,	had	they	been	incorporated,	over	software	
code	 that	 enabled	 the	 trade.	 It	was	 only	 in	 the	 absence	 of	 contract	
terms	governing	the	deal	that	the	court	turned	to	what	the	code	per-
mitted,	and	why.	Thus,	the	coded	rules	of	exchange	were,	in	the	court’s	
view,	largely	irrelevant.	

Second	and	relatedly,	the	Quoine	court’s	focus	on	the	intent	of	the	
programmer	is	a	natural	outgrowth	of	contract	caselaw.	Interestingly,	
Quoine	 focused	 on	 intent	 at	 the	 time	 of	 the	 original	 programming.	
Knowing	what	B2C2	intended	required	the	court	only	to	take	the	tes-
timony	of	one	coder,	and	to	apply	the	normal	judicial	tools	(assessing	
demeanor,	 consistency	with	prior	 statements	 and	 the	documentary	
record)	to	determine	the	“truth”	of	the	coder’s	intent.196	Such	a	simple	
story	is	unlikely	to	replicate	when	we	interrogate	more	complex	cod-
ing	problems.	

We	think	the	Quoine	decision	offers	a	rough	guide	to	the	sorts	of	
problems	that	transactional	scripts	will	raise,	and	a	sense	of	how	com-
mon	law	courts	will	be	motivated	to	resolve	them.	Indeed,	we	think	
the	tribunal	got	it	mostly	right	in	context,	but	that	its	reasons	won’t	
scale.	Given	what	we’ve	learned	about	the	technological	environment	
generating	scripts,	we	make	two	basic	arguments	about	how	the	law	
ought	to	consider	problems	related	to	scripting.	

First,	 judges	should	not	privilege	“contract”	over	“code”	but	ra-
ther	 ought	 to	 ascertain	 and	 harmonize	 meaning	 across	 a	 contract	
stack.	Code—when	read	with	its	natural	language	comments	and	com-
mit	logs—has	communicative	meaning	that	courts	should	seek	to	as-
certain	and	enforce.	Second,	conditional	on	integrating	the	stack,	the	
search	for	meaning	should	focus	on	expressions	that	best	reflect	the	
best	public-facing	account	of	the	parties’	shared	intent	at	the	time	that	
they	committed	to	the	deal.	We	work	through	these	principles	by	sug-
gesting	a	list	of	canons	of	scripted	law.	

	 196.	 B2C2	Ltd.	[2019]	SGHC	(I)	03,	at	89–90.	

362	 MINNESOTA	LAW	REVIEW	 [105:319	

	

A. THE	CANONICAL	STACK	
As	Jason	Allen	has	recently	argued,	transactional	scripts	are	the	

latest	 in	 a	 series	 of	 “‘contractware’,	 i.e.,	 technological	 artefacts	 de-
signed	to	embody	and	perform	contracts.”197	A	chip	 in	a	credit	card	
embodies	the	concept	well.	There	is	a	natural	language	credit	agree-
ment	between	you	and	your	card	company,	updated	and	modified	at	
the	issuers’	will	against	the	background	of	regulation,	which	define	the	
circumstances	under	which	credit	may	be	extended.	Those	terms	par-
allel	ones	agreed	to	between	the	issuer	(or	its	agents)	and	merchants,	
which	enable	your	card	(the	artifact	resulting	from	your	natural	lan-
guage	agreements)	to	effectuate	a	pending	sale	by	insertion	into	the	
merchant’s	reader.	That	 is,	 the	card/reader	performs	contracts	that	
hover	in	the	air	around	them.	

All	contractware	has	this	property:	it	is	wrapped	within	an	ordi-
nary,	legal	contract.	Absent	a	legitimate	connection	to	those	contracts,	
use	of	a	credit	 card	can	still	affect	 the	world—your	account	will	be	
debited,	the	merchant’s	credited—but	such	changes	can	be	quickly	re-
versed.	Of	course,	not	all	contractware	requires	physical	manifesta-
tions.	Allen	argues	that	transactional	scripts	are	an	example	of	con-
tractware	in	which	“the	subject	matter	of	the	contract	is	an	immaterial	
object	which	can	be	manipulated	directly	by	the	[code].”198	

Allen	concludes	that	transactional	scripts	are	layers	in	the	“con-
tract	stack.”199	The	stack	is	a	useful	metaphor	to	describe	the	various	
elements	of	“contract	as	a	complex	entity.”200	A	stack	might	include,	
perhaps,	an	oral	contract	(or	other	indicia	of	social	agreement),	a	writ-
ten	text,	and	the	legal	rules,	which	give	effect	to	the	relationship	be-
tween	the	two.	In	a	transactional	script,	the	“written	text,”	i.e.	natural	
language	terms	like	the	statement	of	terms	and	conditions	in	Quoine,	
is	“complemented	(or	supplanted)	by	code	which	is	also,	incidentally,	
wholly	 or	 partially	 executable	 by	 a	 machine.” 201 	Each	 additional	
step—the	compiling	of	machine-readable	code	from	human	readable	
code—adds	another	layer	of	complexity	to	the	stack,	but	the	stack	is	
intended	to	operate,	and	therefore	ought	to	be	read,	as	a	whole.202	

Many	working	in	this	space	acknowledge	that	contract	stacks	will	
be	 the	mechanism	 through	which	 commercial	 projects	 will	 deliver	

	 197.	 Allen,	supra	note	33,	at	313.	
	 198.	 Id.	at	318.	
	 199.	 Id.	at	330.	
	 200.	 Id.	
	 201.	 Id.	
	 202.	 Id.	at	331.	

2020]	 TRANSACTIONAL	SCRIPTS	 363	

	

scripted	performance.203	This	 is	 the	apparent	 impetus,	 for	example,	
for	 the	 International	Swaps	and	Derivative	Association’s	attempt	 to	
insert	explicit	references	to	scripts,	which	operationalize	interest	pay-
ments	into	the	ISDA	master	contract.204	But	other	sophisticated	pro-
jects,	like	the	OpenLaw	cooperative,	are	explicitly	developing	stacked	
deals.205	

But	 we’d	 go	 further.	 All	 litigated	 scripts	 will	 exist	 in	 contract	
stacks.	That’s	not	to	say	that	there	will	always	be	a	100-page	master	
agreement,	or	even	clicked-through	terms	and	conditions	of	sale.	Ra-
ther,	 our	 claim	 is	 that	 there	 will	 always	 be	 some	 non-code	 state-
ments—ranging	from	the	highly	formalized	terms	and	conditions,	to	
less	formalized	white	papers	and	code	commentary,	to	quite	informal	
promises	(Twitter)—which	will	 inform	tribunals’	understandings	of	
what	the	parties	intended	to	exchange.		

This	 is	 true	both	as	a	matter	of	practice,	 and	a	matter	of	 logic.	
Code	is	not	self-descriptive.	Any	scripts	that	have	practical	relevance	
will	have	some	non-code	language	surrounding	them.	Any	set	of	com-
munications	relevant	to	the	exchange	that	are	visible	to	the	parties	are	
at	 least	 presumptively	 a	 part	 of	 the	 stack.	 (Whether	 they	 all	 count	
equally	is	a	harder	question.)	

	Thus,	although	some	in	the	literature	have	asked	if	a	“smart	con-
tract”	is	really	a	contract,	standing	alone,	we	doubt	the	practical	rele-
vance	of	that	question.	The	code	standing	alone	may	not	fully	specify	
an	executory	contract,	unilateral	or	otherwise,	because	it	simply	ac-
complishes	performance.	But,	unlike	 the	 cheese,	 at	 least	 at	 the	mo-
ment,	 the	code	never	stands	alone.	As	our	examples	 in	Part	 II	 illus-
trate,	it	is	typically	deployed	in	a	social	context.	

Though	the	stack	is	a	relatively	recent	term,	the	idea	that	trans-
actions	are	accompanied	by	many	sorts	of	potentially	legally-opera-
tive	promises	is	not.	You	buy	a	car,	led	to	the	dealership	by	a	commer-
cial,	 and	 see	 a	 price	 at	 the	 entrance	 to	 the	 lot.	 The	 dealer	 makes	
representations	to	you.	You	reply	with	your	own	admissions.	Finally,	
you	sign	a	written	agreement,	which	often	seeks	to	exclude	the	prior	

	 203.	 See,	e.g.,	DE	FILIPPI	&	WRIGHT,	supra	note	33,	at	77	(arguing	that	“hybrid”	con-
tracts	 will	 be	 useful	 especially	 when	 particular	 components	 cannot	 be	 reduced	 to	
code).	
	 204.	 INT’L	SWAPS	&	DERIVATIVES	ASS’N,	LEGAL	GUIDELINES	FOR	SMART	DERIVATIVES	CON-
TRACTS:	THE	ISDA	MASTER	AGREEMEENT	7	(2019),	https://www.isda.org/2019/02/19/	
legal-guidelines-for-smart-derivatives-contracts-the-isda-master-agreement	
[https://perma.cc/HSN4-2A54].	
	 205.	 See	General	Questions,	OPENLAW,	https://app.openlaw.io/faq#first_draft_au-
tomate	 [https://perma.cc/KZ43-6LMC]	 (“On	OpenLaw,	 you	 can	 execute	 smart	 con-
tract	code	by	embedding	a	smart	contract	call	in	any	template.”).	

364	 MINNESOTA	LAW	REVIEW	 [105:319	

	

representations	as	outside	of	the	operative	deal.	The	whole	exchange	
is	 a	 contract	 stack.	 Some	of	 it	 is	 legally	 operative,	 and	 some	 is	not.	
When	you	buy	a	cup	of	coffee	at	 the	store	after	seeing	a	sign	at	 the	
door,	the	process	is	the	same—though	if	you	use	an	app	to	fulfill	the	
purchase,	some	of	the	code	that	accomplishes	payment	is	obscure	to	
you	and	is,	perhaps,	not	part	of	the	contract.	The	point	 is	that	what	
counts	 as	 the	 “contract”	 results	 from	 the	multifarious	 set	 of	 policy	
choices	 that	we	call	 contract	doctrine.	 Sometimes	 that	 construction	
maps	onto	a	single,	written,	document,	but	often	does	not.		

We	thus	suggest	our	first	canon—a	maxim—to	help	courts	make	
sense	of	the	adjudication	of	disputes	arising	from	scripted	exchange.	
Like	all	of	the	rules	that	we	suggest,	it	builds	on	existing	caselaw.	It	is	
also	a	default:	the	parties	can	(and	as	we	explore	below)	have	changed	
it	by	contract.	

	

	
In	working	through	this	canon,	an	example	may	help.	Consider	a	

token	white	paper	makes	a	promise	about	governance	rights,	but	the	
script	contains	no	reference	to	that	promise.206	That	was	the	norm	in	
the	2017	ICO	craze.207	In	previous	work,	we	conducted	an	exhaustive	
audit	of	the	match	between	semantic	disclosures	(including	those	in	
White	Papers,	Twitter,	Instagram,	Reddit,	and	Medium)	and	scripted	
code	in	tokens.	We	found	that	most	programs	had	not,	in	fact,	created	
code	 that	conformed	to	 their	promises.208	“For	over	20%	of	 ICOs	 in	
our	 sample	 where	 promoters	 promised	 cryptoasset	 supply	 re-
strictions,	and	35%	of	promised	token	burning,	we	could	not	observe	
corresponding	 restrictions	 [written	 into	 transactional	 scripts].” 209	
Worse,	we	did	not	find	code-based	vesting	restrictions	in	twenty-five	
of	the	thirty-six	ICOs	where	promoters	promised	to	adhere	to	such	re-
strictions.210	Finally,	of	twelve	ICOs	for	which	our	audit	revealed	that	
a	 central	 party	 could	 modify	 the	 functionality	 of	 the	 cryptoasset’s	
code,	only	four	disclosed	that	ability	in	their	promotional	materials.211	

	 206.	 Cf.	Cohney	et	al.,	supra	note	2,	at	640–44	(discussing	market	solutions	to	miss-
ing	disclosures).	
	 207.	 Id.	at	640.	
	 208.	 Id.	at	639.	
	 209.	 Id.	at	640.	
	 210.	 Id.	
	 211.	 Id.	at	639–40.	

Canon	1:	All	shared	communications	of	intent,	including	the	code,	
comprise	the	legally-operative	stack.	

2020]	 TRANSACTIONAL	SCRIPTS	 365	

	

To	the	extent	that	an	action	for	a	legal	breach	of	such	a	contract	
stack	is	brought,	how	do	we	know	what	was	promised?	Some	might	
argue	that	the	only	legally	operative	promises	are	those	made	in	nat-
ural	 language	documents	outside	of	 the	 code;	 others,	 that	 the	 code	
provides	the	only	relevant	set	of	rules.212	In	a	way,	this	is	quite	similar	
to	the	start	of	a	conventional	parol	evidence	problem	where	multiple	
documents	are	candidates	for	inclusion	as	the	litigated	“contract.”213	
When	the	bounds	of	contract	are	fuzzy—that	is,	in	the	absence	of	in-
tegration—the	stack	of	contractware	is	capaciously	constructed.	This	
problem	is	well	illustrated	by	the	conventional	2-207	problem,	where	
the	parties	have	exchanged	non-matching	forms	and	the	court	must	
compile	a	“contract”	ex	post.214	

Courts	 appropriately	 compile	 into	 the	 stack	 those	 promissory	
statements,	which	seem	to	indicate	transactional	intent.	Thus,	terms	
and	conditions,	because	they	clearly	indicate	the	parties’	intent	to	con-
tract,	are	almost	certainly	part	of	the	stack.	So	too	are	most	published	
white	papers,	which	make	numerous	promises	about	what’s	to	be	de-
livered,	 even	 though	 in	 some	 ways	 they	 are	 offers	 directed	 to	 the	
world.	The	reason	is	obvious:	white	papers	are	the	best	evidence	of	
what	the	code	supplier	intends	to	create,	and	the	way	that	counter-

	 212.	 Some	have	argued	that	the	parol	evidence	rule	would	make	it	difficult	“for	the	
parties	to	prove	their	 intent	to	contract	by	pointing	to	other	circumstances,	such	as	
prior	 dealings	 or	 negotiations.”	 Anna	Duke,	What	Does	 the	 CISG	Have	 to	 Say	 About	
Smart	Contracts:	A	Legal	Analysis,	20	CHI.	J.	INT’L	L.	141,	159	(2019).	This	is	extremely	
puzzling,	as	the	rule	itself	only	applies	to	fully	integrated	agreements.	Others	suggest	
that	when	the	parties	have	“signed	and	verified	that	the	contract	had	been	accurately	
translated	into	computer	code,”	 it	will	be	difficult	 for	them	to	 later	argue	that	there	
were	additional	terms.	Alan	Cohn,	Travis	West	&	Chelsea	Parker,	Smart	After	All:	Block-
chain,	Smart	Contracts,	Parametric	Insurance,	and	Smart	Energy	Grids,	1	GEO.	L.	TECH.	
REV.	273,	281	(2017).	This	too	is	confusing,	since	the	typical	way	that	parties	would	
verify	that	the	contract	is	correct	would	be	to	agree	to	that	stipulation	in	a	natural	lan-
guage	agreement.	
	 213.	 See	Gregory	Klass,	Parol	Evidence	Rules	and	the	Mechanics	of	Choice,	20	THEO-
RETICAL	INQUIRIES	L.	457,	464	(2019)	(“[A]	writing	is	integrated	if	and	only	if	the	parties	
together	intended	that	it	would	serve	as	a	final	statement	of	some	or	all	terms	of	their	
agreement.”).	
	 214.	 See	John	D.	Wladis,	The	Contract	Formation	Sections	of	the	Proposed	Revisions	
to	U.C.C.	Article	2,	54	SMU	L.	REV.	997,	1011	(2001)	(“[T]he	exchange	of	non-matching	
records	rarely	involves	parol	evidence	issues	because	there	is	usually	no	one	record	
that	is	a	final	expression	of	the	parties’	agreement.”).	

366	 MINNESOTA	LAW	REVIEW	 [105:319	

	

parties	 are	 enticed	 to	 invest,	 contribute	 funds,	 or	 otherwise	 trans-
act.215	It	might	be	(as	we	will	explore)	that	terms	and	conditions	pro-
vide	better	evidence	of	 intent	 than	do	white	papers,	when	both	are	
present,	but	as	a	starting	point,	the	white	paper	ought	to	be	consid-
ered	as	part	of	the	set.	

More	transient	promises,	like	those	made	on	social	media	posts,	
on	Reddit,	or	via	video,	are	also	plausible	candidates	for	the	stack.	Ju-
rists	will	ask	if	they	make	promises	sufficiently	definite	and	certain	to	
enable	 a	 fact	 finder	 to	 generate	 the	grist	 for	obligation.216	This	will	
turn	on	the	nature	of	the	promises	made.217	Does	a	post	on	Reddit	stat-
ing	the	precise	amount	of	a	capped	supply	count?218	We	think	so.	But	
one	that	states	that	“people	will	have	an	extended	period	during	which	
they	can	burn”	without	more	detail	seems	to	be	too	vague	to	generate	
obligation.219	

The	hardest	problem	 is	 the	 contractual	 status	of	 the	 script,	 in-
cluding	its	commentary.	It’s	hornbook	law	that	the	parties	can	use	ci-
phers	 to	express	 themselves,	and	 that	courts	ought	 to	enforce	such	
coded	meanings	“however	we	may	marvel	at	the	caprice.”220	In	decid-
ing	whether	to	give	effect	to	private	meanings,	courts	traditionally	en-
gage	in	a	hypothetical	inquiry:	if	the	parties	had	been	queried	at	the	
moment	of	contracting	about	the	meaning	of	a	particular	term,	what	
would	they	have	jointly	said?	Courts	will	thus	self-consciously	adopt	

	 215.	 See	MURRAY,	supra	note	185,	§	2.12[1]	(describing	a	“webpage	whose	contrac-
tual	nature	is	not	obvious”	as	one	where	courts	will	ask	if	“the	recipient	actually	knows	
or	has	reason	to	know	of	it	[when]	she	assents	to	it”).	
	 216.	 See	id.	§	1.11	(defining	an	offer	as	“an	act	whereby	one	person	gives	to	another	
the	legal	power	of	creating	the	relation	called	contract”).	
	 217.	 For	examples	of	the	sorts	of	marketing	promises	made	in	ICO	disclosures,	see	
Shaanan	 Cohney,	 David	Hoffman,	 Jeremy	 Sklaroff	 &	David	Wishnick,	Coin-Operated	
Capitalism	 Appendix	 C,	 COLUM.	L.	REV.,	 https://columbialawreview.org/content/coin	
-operated-capitalism-appendix-c	[https://perma.cc/QGE7-H7AF].	
	 218.	 See,	e.g.,	u/helloicon,	ICON	Technical	Q&A	Summary,	REDDIT	(Sept.	18,	2017,	
1:06	 AM),	 https://www.reddit.com/r/helloicon/comments/70t56h/icon_technical_	
qa_summary	[https://perma.cc/5XJZ-APCB]	(answering	questions	regarding	the	tech-
nicalities	related	to	ICON).	
	 219.	 See	 aetrnty,	Burning	Token,	 REDDIT	(Sept.	 10,	 2017,	 1:42	PM),	 http://www	
.reddit.com/r/Aeternity/comments/6za07b/burning_token	[https://perma.cc/K3QQ	
-PJBL].	
	 220.	 5	MARGARET	N.	KNIFFIN,	CORBIN	ON	CONTRACTS:	 INTERPRETATION	OF	CONTRACTS	
§	24.9	(Joseph	M.	Perillo	ed.,	rev.	ed.	1998);	see,	e.g.,	Hurst	v.	W.J.	Lake	&	Co.,	16	P.2d	
627,	 629	 (Or.	 1932)	 (holding	 the	 term	 “minimum	 50%”	 to	 encompass	 “as	 low	 as	
49.5%”);	Smith	v.	Wilson	(1832)	110	Eng.	Rep.	266,	266;	3	B.	&	Ad.	728,	728	(holding	
that	“parol	evidence	was	admissible	to	sh[ow]	that	.	.	.	the	word	thousand,	as	applied	
to	[the	contract],	denoted	twelve	hundred”).	

2020]	 TRANSACTIONAL	SCRIPTS	 367	

	

the	 parties’	 expressed	 “vernacular.” 221 	Unilateral	 and	 uncommuni-
cated	meaning	bear	as	little	on	the	problem	of	contractual	interpreta-
tion	as	the	public	meanings	that	the	parties	meant	to	cast	aside.222	

A	traditional	requirement	about	non-traditional	communications	
is	that	the	party	against	whom	they	would	operate	reasonably	under-
stands	them	to	be	contractual	in	nature.223	Context	matters:	the	more	
impermanent	the	medium,	the	less	obvious	it	should	be	that	a	bargain	
results	from	the	posting.224	This	is	why,	in	an	old	case,	a	court	found	
that	the	language	on	the	back	of	coat	check	tickets	was	unenforceable:	
such	 scraps	 “did	not	 arise	 to	 the	dignity	of	 a	 contract.”225	Promises	
made	in	terms	and	conditions	feel	like	contracts	(more	or	less),	while	
those	made	on	Twitter	may	not.226	

But	 how	 about	 the	 code?	 The	 primary	 objection	 to	 including	
scripts	as	presumptive	source	of	contractual	intent	is	that	code	does,	
it	makes	 no	 promises	 to	 do.	 True,	 those	 in	 the	 know	 can	 learn	 the	
coder’s	sophistication	from	her	script’s	elegance	and	economy,	just	as	
connoisseurs	of	font	will	make	inferences	based	on	this	Article’s	type-
setting.	But	that’s	not	the	same	as	the	sort	of	promissory	communica-
tion	that	normally	generates	obligation.	Moreover,	because	the	code	
is	inherently	buggy—as	we	have	explored—including	it	into	the	stack	
necessarily	means	 that	 courts	 are	 adopting	 ambiguous	 evidence	 of	
what	the	parties	“really”	mean	to	accomplish.		

Of	course,	natural	language	is	buggy	too,	as	centuries	of	experi-
ences	with	contract	interpretation	problems	make	clear.	And	the	code	
is	festooned	with	natural	language	comments	and	commit	logs,	which	
do,	implicitly	or	explicitly,	state	what	the	coders	are	trying	to	accom-
plish.	Most	importantly,	in	light	of	the	social	conventions	of	the	script-

	 221.	 KNIFFIN,	supra	note	220,	§	24.13.	
	 222.	 Id.	§	24.6.	
	 223.	 MURRAY,	 supra	 note	 185,	 §	 2.12[1]	 (discussing	 non-contractual	 documents	
that	are	not	enforced	for	lack	of	inquiry	notice).	
	 224.	 In	some	contexts,	statements	directed	at	the	whole	world	will	be	deemed	to	
be	advertisements.	Id.	§	2.4.	But	since	white	papers	and	the	like	aren’t	considered	in	
the	abstract	here,	but	rather	when	accompanying	the	scripts	which	put	them	into	ef-
fect,	the	better	analogy	is	the	supermarket	circular	distributed	at	the	grocery	itself.	Id.	
§	2.7.	
	 225.	 Healy	v.	N.Y.	Cent.	&	Hudson	River	R.R.	Co.,	153	A.D.	516,	519–20	(N.Y.	App.	
Div.	1912).	
	 226.	 See	Berkson	v.	Gogo	L.L.C.,	97	F.	Supp.	3d	359,	382	(2015)	(arguing	that	elec-
tronic	 contracts	 “require	 clearer	 notice	 than	 do	 traditional	 retail”).	 But	 cf.	 Kristen	
Chiger,	When	Tweets	Get	Real:	Applying	Traditional	Contract	Law	Theories	to	the	World	
of	Social	Media,	3	ARIZ.	STATE	U.	SPORTS	&	ENT.	L.J.	1,	6	(2013)	(finding	that	tweets	can	
create	contractual	obligation).	

368	 MINNESOTA	LAW	REVIEW	 [105:319	

	

ing	industry	today,	it	is	reasonable	to	conclude	that	participants	be-
lieve	 that	 the	 code-and-comments	 create	 obligations,	 i.e.,	 that	 the	
script	is	contractual	in	nature.	The	very	term	“smart	contracts”	justi-
fies	this	conclusion.	The	rhetoric	of	exchanging	in	contracting	should	
be	constitutive.	

This	 conclusion	 is	 strengthened	 in	 light	 of	 our	 focus	 on	public	
blockchains,	 where	 all	 of	 the	 relevant	 parties	 have	 access	 to	 the	
scripted	 rules,	 can	 inspect	 them,	 and	 can	 read	 the	 associated	 code	
commentary.	By	definition,	we	have	examined	scripts	that	are	open	to	
bilateral	inspection.	It	would	be	as	if	we	were	considering	a	contract	
about	the	importation	of	chicken	from	abroad,	between	parties	from	
different	 countries,	 that	 expressly	 incorporated	 a	 foreign	 language	
dictionary,	and	then	denied	that	dictionary’s	relevance	in	understand-
ing	the	parties’	meaning.	Course	of	performance	is	typically	seen	as	a	
strong	signal	of	meaning:	the	script	is	yet	a	clearer	signal.	It	is	the	ex-
pressed	 performance	 itself,	 fixed	 contemporaneously	 with	 agree-
ment.	(If	the	code	were	not	public,	as	we’ll	discuss	below,	its	relevance	
to	discerning	the	parties’	agreement	would	be	more	obscure.)	

Incentives	provide	a	final	reason	to	include	code	in	the	stack.	If	
lawyers	are	on	notice	that	the	code	has	legal	relevance,	that	it	can	cre-
ate	or	destroy	obligation,	or	help	jurists	to	interpret	them,	they	will	
begin	to	pay	attention.	The	scripting	industry	at	the	moment	is	cov-
ered	by	few	specific	rules,	because	of	uncertainty	about	the	nature	of	
the	 underlying	 asset	 type.	 Private	 regulation	 through	 lawyering—
having	lawyers	work	to	understand	exactly	what	the	script	says	and	
inquire	how	it	might	go	wrong—is	a	way	to	help	to	civilize	this	wild	
west.	That	is,	bringing	the	script	into	the	contract	stack	will	motivate	
lawyers	 to	care	about	coding,	and	coders,	 and	consequently	 reduce	
the	likelihood	of	promissory	fraud.227	

B. TENSIONS	WITHIN	THE	STACK	
What	 happens	 if	 there	 are	 differences	 in	 what’s	 promised	 be-

tween	elements	of	the	stack?	Allen	argued	that	questions	of	intent	are	
particularly	difficult	when	interpreting	code,	as	the	formal	language	
might	have	meta-logics—internal	and	intentionally	chosen	goals	(like,	
for	example,	compactness).228	He	thus,	suggests	that	courts	may	need	
to	modify	traditional	canons	of	interpretation	to	think	about	how	to	
best	capture	the	parties’	meaning	when	working	through	layers	of	a	

	 227.	 Some	may	worry	 that	 lawyers	will	 seek	 to	clean	code	of	 commentary	alto-
gether	to	reduce	interpretative	overhang.	But	it	will	be	extremely	difficult,	if	not	im-
possible,	to	do	so	without	leaving	inculpatory	evidentiary	traces.	
	 228.	 Allen,	supra	note	33,	at	341.	

2020]	 TRANSACTIONAL	SCRIPTS	 369	

	

stack.229	He	gives	no	further	details,	and	this	next	part	elaborates	on	
the	problem.	

Courts	will	often	say	that	interpretation	ought	to	make	sense	of	
the	“contract	as	a	whole,”	that	is,	“the	entire	deed,	and	not	merely	upon	
disjointed	parts	of	it.”230	That’s	particularly	true	when	the	parties	ex-
press	 their	 agreements	 in	 multiple	 documents. 231 	In	 determining	
meaning	when	 there	 is	 ambiguity,	 extrinsic	 evidence—that	 is,	 any-
thing	other	 than	 the	 contract	 itself—is	 commonly	 admitted.232	This	
leads	us	naturally	to	a	canon	seeking	harmonization.	

	

	
We	start	by	returning	to	the	ICO	example.	At	least	until	recently,	

it	was	common	for	white	papers	to	make	promises	about	governance	
in	ICO	“smart	contracts,”	but	neglect	to	write	actual	scripts	containing	
such	coded	rules.233	In	our	view,	the	stack	as	a	whole	ought	to	be	read	
to	be	making	a	promise:	the	absence	of	protection	in	the	code	should	
not	be	dispositive.	If,	for	example,	the	projects’	founders	were	to	take	
assets	in	violation	of	a	textual	vesting	promise,	an	action	ought	to	lie	
for	breach.	That’s	true	even	though	an	informed	reader	with	an	un-
derstanding	of	Solidity	would	have	readily	observed	that	the	tokens	
contained	no	promises.	(Most,	in	fact,	were	essentially	the	unmodified	
ERC-20	code.)	The	point	is	that	a	legally	informed	reader	could	believe	
those	promises	to	be	enforceable	based	on	the	white	paper	alone,	and	
their	repetition	within	the	script	unnecessary.	

Conversely,	when	 the	natural	 language	disclosures	say	nothing	
about	the	ability	to	modify	rights	described	as	having	been	created	in	

	 229.	 Id.	
	 230.	 KNIFFIN,	supra	note	220,	§	24.21	(quoting	Blackstone).	
	 231.	 See	RESTATEMENT	(SECOND)	OF	CONTS.	§	202(2)	(AM.	L.	INST.	1981)	(“[A]ll	writ-
ings	that	are	part	of	the	same	transaction	are	interpreted	together.”).	
	 232.	 Note	that	New	York	courts,	like	many	others	in	a	modern	formalist	trend,	take	
a	different	approach.	See,	e.g.,	Gilbane	Bldg.	Co./TDX	Constr.	Corp.	v.	St.	Paul	Fire	&	
Marine	Ins.	Co.,	97	N.E.3d	711,	714	(N.Y.	2018)	(holding	that	extrinsic	evidence	regard-
ing	intent	should	be	admitted	only	when	the	parties’	agreement	is	unclear).	
	 233.	 For	example,	the	Monaco	project	promised	that	its	supply	would	be	capped	in	
a	transactional	script:	“The	MCO	smart	contract	will	stop	accepting	commitments	at	
888,888ETH	 hard	 cap.”	 MONACO,	 MONACO	WHITEPAPER	 8	 (2018),	 https://whitepa-
perdatabase.com/wp-content/uploads/2018/03Monaco-MCO-Whitepaper.pdf	
[https://perma.cc/7GKB-9D2D].	 But	 our	 audit	 disclosed	 no	 such	 scripted	 commit-
ment.	See	Cohney	et	al.,	supra	note	2,	app.B.	

Canon	 2:	 Where	 Possible,	 Interpret	 the	 Stack	 to	 Harmonize		
Meaning.	

370	 MINNESOTA	LAW	REVIEW	 [105:319	

	

a	token,	but	the	script	appears	to	permit	modification,	we	might	con-
clude	 that	 the	 contract	 stack	 permits	 unilateral	 changes. 234 	In	 the	
search	to	understand	what	the	contract	stack	promises,	neither	code	
nor	script	ought	to	prevail	over	the	other,	again	unless	the	parties	oth-
erwise	indicate.	The	goal	is	to	determine	what	the	parties	intended,	
expressed	in	whatever	cipher	they	chose.	We	should	not	a	priori	dis-
miss	rights	provided	in	code.	

The	TokenStore	problem	offers	another	setting	for	the	harmoni-
zation	principle.	Recall	that	TokenStore	had	a	vestigial	legal	wrap	in	
place:	a	handful	of	twitter	and	medium	posts,	making	vague	gestures	
about	 the	 exchange’s	 commitment	 to	 being	 a	 hands-off-enterprise.	
The	code	permitted	trader	errors—indeed,	it	did	nothing	to	prevent	
them.	 However,	 the	 code	 commentary	 stated	 that	 “we	 [i.e.,	 Token-
Store’s	operators]	validate	 the	contents	and	the	creator	address”	of	
the	“orders.”	

It’s	 not	 clear	 what	 the	writers	 of	 this	 comment	 intended	 it	 to	
mean.	 In	programming	communities,	validate	can	take	on	a	narrow	
meaning—someone	can	enter	an	“input	in	a	form	that	is	not	expected,”	
leading	to	“altered	control	flow,	arbitrary	control	of	a	resource,	or	ar-
bitrary	code	execution.”235	But	it	can	also	take	on	a	broader	meaning,	
i.e.,	 that	 the	code	produces	commercially	 reasonable	 results.236	And	
perhaps	 such	 narrow	 programming	 meanings	 are	 only	 relevant	 in	
commercial	markets,	so	that	“validate”	ought	to	take	on	an	ordinary	
meaning,	 i.e.,	 “to	make	 legally	 valid.”	 This	would	mean	 that	 the	 ex-
change	 bears	 the	 risks	 of	 obvious	 errors.	 Such	 a	 reading	would	 be	
helpful	to	a	trader’s	action	for	rescission	based	on	mistake	(which	will	
turn	in	part	on	what	the	contract	says	about	risk)	as	well	as	that	for	
ordinary	breach	of	contract.	In	our	view,	the	correct	approach	again	
would	seek	to	make	sense	of	the	gestalt	project,	treating	the	code	and	
its	natural	language	comments	as	guides	to	the	parties’	joint	intent.	

	 234.	 See	Cohney	et	al.,	supra	note	2,	at	630–34.	Of	course,	a	court	could	find	that,	in	
light	of	an	industry-wide	practice	of	describing	rights	as	“immutable,”	silence	in	one	
layer	 of	 the	 stack	 should	 be	 interpreted	 against	 a	 commercial	 background	denying	
modifiability.	Id.	at	615	n.114.	
	 235.	 CWE-20:	 Improper	 Input	Validation,	 COMMON	WEAKNESS	ENUMERATION	 (Sept.	
19,	2019),	https://cwe.mitre.org/data/definitions/20.html	[https://perma.cc/C3GA-
FM6Y].	
	 236.	 See	Data	Validation:	OSWAP	Guide	 to	Building	Secure	Web	Applications	and	
Web	 Services,	 COMMON	OPEN	WEB	 APPLICATION	 SEC.	 PROJECT	 (Jan.	 5,	 2006),	 https://	
searchsoftwarequality.techtarget.com/news/1156594/Data-validation-Chapter-12	
-OWASP-Guide-to-Building-Secure-Web-Applications-and-Web-Services	[https://	
perma.cc/P8GG-VG7F]	 (“Business	rules	 [e]nsure	 that	data	 is	not	only	validated,	but	
business	rule	correct.”).	

2020]	 TRANSACTIONAL	SCRIPTS	 371	

	

Harmonization	becomes	difficult	when	parts	of	a	 contract	 con-
flict.237	When	pieces	of	a	deal	 counterpose,	 courts	 traditionally	 first	
seek	to	ascertain	the	parties’	principal	purpose,	and	then	to	advance	
it	by	deciding	out	which	pieces	of	evidence	to	privilege.238	For	exam-
ple,	handwritten	terms	prevail	over	typewritten	terms,	and	specially	
typed	 provisions	 control	 over	 pre-printed	 forms. 239 	Courts	 fore-
ground	those	provisions	that	they	believe	are	best	indicators	of	what	
the	parties	“really”	meant.240	

Scripted	exchange	will	sometimes	also	pose	problems	of	incon-
sistent	 intent.	Given	that	pieces	of	 the	stack	are	written	at	different	
times,	 by	 authors	 with	 distinct	 professional	 backgrounds,	 and	 in-
tended	for	different	readers,	we	should	anticipate	conflicts	in	mean-
ing.	 As	 a	 default	 rule,	we’d	 propose	 a	 hierarchy	 of	meaning,	which	
privileges	natural	language	wrapping	text	over	code	when	they	con-
flict.	

	

	
By	wrapping	text,	we	mean	to	include	any	text	that	is	outside	the	

code	itself,	but	within	the	stack.	When	such	text	conflicts	with	code,	
we	 think	 the	 parties’	 contract—what	 they	 can	 sue	 on—most	 likely	
turns	 on	 their	 natural	 language	 expression.241 	This	 is	 a	 pragmatic	
choice.242	As	with	the	Quoine	tribunal,	most	judges	are	going	to	have	a	
natural	affinity	for	text	that	they	can	read	without	the	aid	of	an	expert	

	 237.	 Cf.	Surden,	supra	note	32,	at	657	(“A	primary	unresolved	tension	may	occur	
in	future	scenarios	where	there	is	both	a	written	and	data-oriented	representation	of	
the	same	contractual	expression,	with	interpretations	that	differ.”).	
	 238.	 See	KNIFFIN,	supra	note	220,	§	24.20	(“When	the	principal	purpose	of	the	par-
ties	becomes	clear,	further	interpretation	should	be	guided	thereby.”).	
	 239.	 See	generally	id.	§	24.23,	at	236,	251	(discussing	various	rules	that	courts	use	
to	reconcile	conflicting	contract	terms).	
	 240.	 See	id.	§	24.9,	at	59	(“A	court’s	purpose	in	using	extrinsic	evidence	to	interpret	
a	contract	is	discernment	of	the	parties’	intentions.”).	
	 241.	 See	Rohr,	supra	note	33,	at	85	(“[C]ode	[that	automates	a	larger	agreement]	is	
likely	to	be	viewed	as	a	component	of	performance	that	one	party	will	attempt	to	prove	
is	nonconforming.”).	
	 242.	 For	a	defense	of	a	search-costs	based	theory	of	parol	evidence	and	other	rules	
that	limit	“idiosyncratic	understandings,”	see	Joshua	A.T.	Fairfield,	The	Search	Interest	
in	Contract,	92	IOWA	L.	REV.	1237,	1265–67	(2007).	

Canon	3:	In	cases	of	conflict,	privilege	natural	language	promises	
over	 coded	 ones:	 i.e.,	wrapping	 text,	 commitment	messages	 and	
code	commentary	over	code,	high	level	code	over	byte	code.	

372	 MINNESOTA	LAW	REVIEW	 [105:319	

	

translator.243	They	will	argue	that	“no	one	reads	smart	contracts.”244	
(The	fact	that	no	one	reads	regular	contracts	is	equally	true,	though	it	
feels	easier	to	blame	them	for	it.)245	Of	course,	just	like	contract	text,	
code	can	be	“read,”	and	often	results	from	a	similar	iterative	drafting	
process	as	old-fashioned	contracts.	

Why,	then,	privilege	English	over	Code?	One	reason	sounds	in	the	
classic	worries	about	opportunism	and	bad	faith	that	drives	many	ju-
dicial	treatments	of	adhesion	contracts.	If	parties	could	avoid	a	con-
tractual	promise	by	negating	it	in	code	that	you	had	no	reason	to	think	
would	 be	 read,	we	would	 rightly	worry	 about	 promissory	 fraud	 or	
other	forms	of	bait-and-switch	behavior.	Though	today,	many	users	of	
transactional	 scripts	 are	 sophisticated—even	 to	 access	 scripts,	 you	
usually	install	specialized	software	on	your	computer—that	may	not	
be	the	case	going	 forward.	Given	that	English	 is	easier	 to	read	than	
Solidity	 and	 other	 high-level	 programming	 languages,	 courts	 will	
likely	privilege	natural	language	promises	wherever	they	can.	

But	at	a	deeper	level,	our	intuition	is	that	courts	imagine	they	are	
looking	for	something	they	call	“real”	intent,	which	is	really	more	like	
what	the	parties	expressed	about	their	intent	to	the	world.246	Just	as	
with	other	forms	of	commercial	transactions	drafted	and	entered	in	
stages,	discerning	real	intent	is	often	a	fool’s	errand.247	That	inquiry	
falsely	implies	that	the	parties	gave	the	problem	some	thought.	When	
courts	speak	about	intent,	they	are	engaging	in	a	hypothetical	and	im-
aginative	exercise,	which	entails	significant	degrees	of	analytic	free-
dom.	But	imaginative	exercises	must	be	explainable	in	public	judicial	

	 243.	 In	 consumer-facing	 transactions,	 courts	 also	may	worry	about	 exploitation	
when	 parties	 use	 language	 that	 is	 hard	 for	 adherents	 to	 understand.	 See,	 e.g.,	
Frostifresh	Corp.	v.	Reynoso,	274	N.Y.S.2d	757,	759	(N.Y.	Dist.	Ct.	1966)	(finding	that	
the	adherents	were	“handicapped”	by	contract	terms	written	“in	a	language	foreign	to	
them”).		
	 244.	 Cohney	et	al.,	supra	note	2,	at	598.	
	 245.	 See	Tess	Wilkinson-Ryan,	A	Psychological	Account	of	Consent	to	Fine	Print,	99	
IOWA	L.	REV.	1745,	1751	(2014)	(“[O]ne	of	the	truisms	of	empirical	contracts	research	
is	that	‘nobody	reads.’”).	
	 246.	 See	Rohr,	supra	note	33,	at	78	(discussing	how	courts	can	derive	traditional	
contract	formation	concepts,	like	intent,	from	a	vending	machine	transaction).	
	 247.	 See	Douglas	G.	Baird	&	Robert	Weisberg,	Rules,	Standards,	and	the	Battle	of	the	
Forms:	A	Reassessment	of	§	2-207,	68	VA.	L.	REV.	1217,	1219	(1982)	(noting	that	the	law	
cannot	resolve	the	battle	of	the	forms	by	inquiring	into	the	parties’	intent);	GRANT	GIL-
MORE,	THE	DEATH	OF	CONTRACT	46–47	(2d	ed.	1995)	(“If	.	.	.	‘the	actual	state	of	the	par-
ties’	minds’	is	relevant,	then	each	litigated	case	must	become	an	extended	factual	in-
quiry	into	what	was	‘intended,’	‘meant,’	‘believed’	and	so	on.”).	

2020]	 TRANSACTIONAL	SCRIPTS	 373	

	

opinions,	and	thus	rely	to	a	degree	on	text	that	can	be	read	by	the	wid-
est	 audience,	 and	 that	 is	 susceptible	 to	 the	 cheapest	 judicial	 over-
sight.248	

As	we’ve	shown,	code	is	irreducibly	buggy,	and	the	normal	ways	
that	 coders	 handle	 error—by	 iterating	 better	 versions—may	 not	
translate	well	to	scripted	exchange.	Code	simply	isn’t	a	very	straight-
forward	way	to	express	the	parties’	intent.	By	contrast,	parties	have	
had	hundreds	of	years	of	experience	contracting	in	English	(or	French,	
or	Esperanto,	turning	on	the	court’s	and	parties’	native	tongue).	Un-
less	there	is	good	evidence	that	a	particular	line	of	code	was	made	sa-
lient—for	example,	 if	 it	 is	referred	to	by	 line	number	 in	the	natural	
language	 contract	 itself—courts	 should	 conclude	 that	 text	 trumps	
code.249	A	combination	of	realism	and	efficiency,	at	the	end	of	the	day,	
will	privilege	publicly	accessible	meaning.250	

Whether	the	text	wrapping	layer	should	displace	case	commen-
tary	and	commit	logs	is	a	much	harder	problem.	Here,	the	concerns	
about	publicly	accessible	meaning	drop	away,	since	code	commentary	
is	generally	written	in	English	(or	at	least	a	coding	dialect	that	can	be	
grokked).	The	remaining	issue	is	whether	commentary	intending	to	
explain	 a	 cipher	 is	 as	 good	 evidence	 of	what	 the	 exchange	was	 in-
tended	to	accomplish	as	the	wrapping	text’s	more	legalistic	frame.	

On	the	one	hand,	the	commit	logs	and	commentary	are	integral	
to	the	code	itself,	expressed	contemporaneously	with	its	fixation	and	
with	the	goal	of	revealing	its	 intent.251	It	 is	the	“crown	jewel”	of	the	

	 248.	 One	analogy	is	the	courts’	treatment	of	disputes	about	meaning	based	on	dif-
ferences	in	the	parties’	respective	native	tongues.	See,	e.g.,	Frigaliment	Importing	Co.	
v.	B.N.S.	Int’l	Sales	Corp.,	190	F.	Supp.	116	(S.D.N.Y.	1960).	In	such	cases,	the	courts	may	
adopt	the	broadest	and	widest-shared	meaning	available.	
	 249.	 Rohr	points	 out	 that	 courts	 that	have	 analyzed	vending	machine	 contracts	
were	drawn	to	meeting	of	the	mind	analogies,	even	when	they	plainly	were	inapt.	Rohr,	
supra	note	33,	at	80	(“Vending	machine	cases	are	.	.	.	predictive	of	the	types	of	issue	
that	.	.	.	[will]	arise	as	judges	attempt	to	apply	foundational	common	law	contract	prin-
ciples	to	smart	contracts	going	forward.”).	
	 250.	 For	a	different	defense	of	publicly	accessible	meaning,	see	generally	Aaron	D.	
Goldstein,	The	Public	Meaning	Rule:	Reconciling	Meaning,	Intent,	and	Contract	Interpre-
tation,	53	SANTA	CLARA	L.	REV.	73	(2013),	which	argues	that	extrinsic	evidence	should	
be	limited	to	public	and	shared	meaning	to	avoid	gamesmanship.	
	 251.	 See	Daniela	Steidl,	Benjamin	Hummel	&	Elmar	 Juergens,	Quality	Analysis	 of	
Source	Code	Comments,	in	2013	IEEE	21ST	INT’L	CONF.	ON	PROGRAM	COMPREHENSION	83,	
83	(“A	significant	amount	of	source	code	 .	.	.	consists	of	comments,	which	document	
the	 implementation	and	help	developers	to	understand	the	code		Comments	are	
the	second	most-used	documentary	artifact	for	code	understanding,	behind	only	the	
code	itself.”).	

374	 MINNESOTA	LAW	REVIEW	 [105:319	

	

code,	laying	bare	its	“inner	secrets.”252	Code	commentary	and	commit	
logs	are	 thus	 like	 the	definition	section	of	an	ordinary	contract:	 the	
very	 best	 evidence	 of	 meaning. 253 	Consequently,	 commentary	 and	
commit	logs	should	be	privileged	over	the	code	it	explains.	

That	 said,	 some	might	worry	 that	 code	 commentary	 (and,	 to	 a	
lesser	extent,	commit	logs)	is	intended	to	be	disposable254—it	might	
signal	what	a	coder	hoped	to	achieve	but	 is	not	 likely	 to	have	been	
written	with	particular	care.255	For	example,	as	we	discussed	above,	
most	open	source	code	today	is	reused	from	script	to	script.	Thus,	it’s	
not	necessarily	(or	even	usually)	the	case	that	the	commentary	was	
written	with	a	singular	project’s	goals	in	mind.	Blindly	adopting	such	
commentary	 as	 gospel	 risks	 being	 misled	 as	 to	 what	 the	 parties	
wanted,	just	as	(for	example)	adopting	boilerplate	can,	over	time,	lead	
parties	to	use	terms	that	even	they	do	not	understand.256	

Even	considering	these	risks,	commentary	and	commit	messages	
should	have	the	same	interpretative	weight	as	natural	language	con-
tract	terms.	True,	they	might	not	provide	clear	evidence	of	promissory	
intent.	But	 the	 same	objections	 can	be	made	about	boilerplate	 that	
travels	from	deal	to	deal.	Moreover,	though	it’s	true	that	some	coders	
treat	 commentary	 and	 logs	 as	 disposable,	 well-counseled	 projects,	

	 252.	 Jeffrey	D.	Sullivan	&	Thomas	M.	Morrow,	Practicing	Reverse	Engineering	in	an	
Era	of	Growing	Constraints	Under	the	Digital	Millennium	Copyright	Act	and	Other	Provi-
sions,	14	ALB.	L.J.	SCI.	&	TECH.	1,	17	(2003)	(“Reverse	engineering	does	not	lay	bare	a	
program’s	 inner	 secrets.	 Indeed,	 it	cannot.	 The	 inner	 secrets	of	 a	program,	 the	 real	
crown	 jewels,	are	embodied	 in	 the	higher	 levels	of	abstraction	material	such	as	 the	
source	code	commentary	and	the	specification.”).	
	 253.	 There	may	be	examples	where	coders	make	an	explicit	attempt	to	synthesize	
the	semantic	contract	within	the	code.	See,	e.g.,	LEXON,	http://demo.lexon.tech/apps/	
editor	 [https://perma.cc/DY2R-4X4D]	 (embedding	 human	 readable	 semantic	 con-
tract	within	compliable	code	that	exports	to	Solidity).	
	 254.	 Andrew	 Johnson-Laird,	Software	Reverse	Engineering	 in	 the	Real	World,	 19	
DAYTON	L.	REV.	843,	857	(1994)	(“[Source	code	commentary]	is	the	equivalent	of	mar-
ginal	annotations	and	is	intended	to	assist	the	original	programmer	or	those	that	fol-
low	in	understanding	why	the	program	was	crafted	in	a	particular	way,	or	to	explain	a	
particularly	complex	flow	of	logic.	There	are	no	restrictions	on	what	must	or	must	not	
be	written	in	comments,	but	 inevitably	they	are	the	repository	of	all	 the	knowledge	
that	the	programmer	has	in	his	or	her	head	as	the	code	is	being	created.	One	also	fre-
quently	sees	a	certain	irreverence	in	the	commentary	which	is	a	by-product	of	the	ex-
uberance	of	programmers	and	is	best	not	taken	too	seriously”).	
	 255.	 Cf.	Haque	et	al.,	 supra	note	52,	at	58	(“Another	 [developer]	may	constantly	
contribute	a	high	volume	of	lines	over	a	long	period	of	time,	but	still	be	a	functionary	
whose	work	is	wholly	non-essential	and	could	easily	be	replaced	by	others.”).	
	 256.	 See	generally	Stephen	 J.	Choi,	Mitu	Gulati	&	Robert	E.	Scott,	The	Black	Hole	
Problem	 in	 Commercial	 Boilerplate,	 67	 DUKE	L.J.	 1,	 2	 (2017)	 (describing	 pari	 passu	
clauses	as	“a	standard	provision	in	sovereign	debt	contracts	that	almost	no	one	seems	
to	understand”).	

2020]	 TRANSACTIONAL	SCRIPTS	 375	

	

knowing	 the	 rule	 that	we	propose,	would	be	well-positioned	 to	ex-
pand	on	commentary	before	deploying	a	script,	and	impose	discipline	
over	commits	that	are	merged	into	the	project.	The	result	could	be	an-
other	opportunity	to	surface	and	correct	bugs,	while	aligning	the	par-
ties’	expectations	with	what	they	receive.	And,	of	course,	this	is	just	a	
default	rule:	the	parties	may	express	a	different	rule	by	contracting	for	
it.257	
	 Finally,	we	think	that	the	source	code	generally	is	a	better	source	
of	meaning	than	the	compiled	byte	code.	That’s	so	because	the	source	
code	is,	in	broad	strokes,	readable	by	humans	with	the	exercise	of	rea-
sonable	effort,	meaning	that	all	parties	to	a	transaction	can	gain	some	
insight	as	 to	what	 they’ve	agreed.	The	alternative,	which	holds	 that	
byte	code	is	the	“real”	contract,	seems	likely	to	lead	to	embarrassing	
results.	For	example,	consider	this	“online	user	agreement”	that	a	law	
student	confronted:	

	 257.	 Cf.	Surden,	supra	note	32,	at	652	(“A	‘data-meaning	threshold	agreement’	pro-
vides	specific	interpretations	[for	computable	contracts].”).	

376	 MINNESOTA	LAW	REVIEW	 [105:319	

	

Figure	5258	
	
This	 is	 not	 bytecode,	 but	 rather	 an	 erroneous	 encoding	 of	 the	

bytes	into	the	glyphs	that	represent	them.	Obviously,	clicking	on	the	
agree	 box	 wouldn’t	 bind	 anyone—the	 gibberish	 communicates	 no	
meaningful	 information	 to	 humans	 (even	 if	 some	 computer,	 some-
where,	could	make	sense	of	it).	Byte	code	is	likewise	at	the	very	bot-
tom	of	our	interpretative	hierarchy,	as	decoding	it	requires	the	exer-
tion	 of	 effort	 and	 expertise	 likely	 beyond	 the	 capacity	 of	 the	
contracting	parties.		

These	 interpretive	 principles	 ought	 to	 give	way	 depending	 on	
context.	 Thus,	we	 imagine	 that	 ephemeral	 contractual	 promises—a	

	 258.	 Samuel	 P.	 Morse	 (@SamuelPMorse),	 TWITTER	 (Sept.	 13,	 2019,	 8:10	 AM),	
https://twitter.com/SamuelPMorse/status/1172497664799363075	 [https://perma	
.cc/3KZ2-TY4F].	

2020]	 TRANSACTIONAL	SCRIPTS	 377	

	

stray	tweet	by	a	project	manager	promising	a	particular	outcome	of	
the	 script—would	 likely	not	displace	 a	well-curated	GitHub	 reposi-
tory.	Or,	a	piece	of	code	commentary	that	makes	a	joke.	Here,	again,	
our	argument	rests	on	a	pragmatic	judgment	as	to	what	courts	will	do,	
which	 in	 turn	 relates	 to	 the	 parties’	 reasonable,	 commercially-in-
formed	expectations.259	The	more	permanent,	considered	and	reliable	
the	evidence	of	a	promise—the	more,	in	other	words,	it	would	be	rea-
sonable	to	rely	upon	it—the	more	a	court	is	likely	to	consider	it	a	reli-
able	basis	of	the	bargain.	

Finally,	 consider	 a	 problem	 of	 interpretation	 that	 has	 no	 easy	
non-scripted	analogue.	What	if	the	programmers’	intent	is	internally	
contradictory	and	is	recorded	as	such?	Of	course,	courts	will	often	say	
that	a	party’s	private	meaning	ought	to	be	discounted	when	ascertain-
ing	the	shared	intent	of	the	transaction.	Thus,	simply	because	one	law-
yer	on	a	team	thought	that	“black”	means	“white”	doesn’t	mean	that	
the	term	takes	on	that	meaning,	unless	that	lawyer	communicated	her	
meaning	to	the	other	side	in	a	way	that	seemed	authoritative.260	This	
is	why	some	have	argued	that	visible	metadata	ought	to	bear	on	mean-
ing.261	

Evidence	of	inconsistent	drafter	intent	in	the	transactional	script	
context	is	different.	Given	the	use	of	version	control	systems,	both	the	
expression	of	code	and	the	identity	of	who	wrote	each	line	of	human-
readable	code	may	be	knowable	at	the	moment	the	counterparty	in-
spects	the	terms,	and	certainly	at	the	moment	of	formation.	So	is	the	
commentary.	Because	the	code	is	public,	all	parties	can	see	the	con-
flicting	evidence	of	meaning	at	the	moment	the	contract	is	entered:	it	
is	like	the	parties’	final	executed	document	included	visible	redlined	
changes.262	Thus,	 a	 party	might	 encounter	 a	 piece	 of	 code	 that	 has	
multiple	 drafters	who	 appear	 to	 be	 communicating	 different	 goals.	
What	to	do	in	this	scenario?	

	 259.	 MURRAY,	supra	note	185,	§	4.12	(discussing	the	role	of	reasonable	interpreta-
tions	in	determining	meaning).	
	 260.	 See	Cendant	Corp.	v.	Commonwealth	Gen.	Corp.,	No.	98C-10-034	HLA,	2002	
WL	31112430,	at	*6	(Del.	Super.	Ct.	Aug.	28,	2002)	(holding	that	a	contract’s	“Material	
Adverse	Change”	created	an	issue	of	material	fact	because	each	party	had	plausible,	
but	different,	interpretations	of	the	clause).	
	 261.	 See,	 e.g.,	Thomas	H.	White,	Parol	Metadata:	New	Boilerplate	Merger	Clauses	
and	the	Admissibility	of	Metadata	Under	 the	Parol	Evidence	Rule,	4	CASE	W.	RSRV.	J.L.	
TECH.	&	INTERNET	237,	267	(2012)	(“If	the	metadata	is	visible	on	the	final	version	of	the	
contract,	this	should	be	conclusive	weight	in	favor	of	its	admissibility	[under	the	parol	
evidence	rule].”).	
	 262.	 For	an	argument	that	non-resolved	tracked	changes	ought	to	be	included	as	
part	 of	 the	 integrated	 document,	 see	 Elizabeth	 A.	 Janicki,	Contracts	 as	 Speech	 Acts:	
Bringing	Jakobson	to	the	Conversation,	107	GEO.	L.J.	201,	218	n.113	(2018).	

378	 MINNESOTA	LAW	REVIEW	 [105:319	

	

The	simplest	answer—harmonization	with	the	rest	of	the	agree-
ment	and	with	the	social	context—is	probably	best.	But	its	application	
is	subtle	and	rooted	in	the	sociology	of	the	operative	coding	commu-
nity.	We	ought	to	prefer	(and	render	operative)	the	meanings	of	cod-
ers	who	advance	the	larger	agenda	of	the	project,	to	the	extent	it	can	
be	reconstructed.263	Failing	that,	we	should	prefer	later	in	time	to	ear-
lier	in	time	pieces	of	code,	and	code	which	hews	closely	to	the	com-
mentary	that	surrounds	it.	These	match	the	background	rules	of	con-
tract	interpretation,	which	generally	seek	to	find	and	give	priority	to	
the	best	available	evidence	of	 the	parties’	expressed	and	 integrated	
intent.	

Overall,	 this	 interpretative	 hierarchy,	 which	 promotes	 super-
vised	coding	and	last-in-time	syntax,	arises	out	of	the	same	intuitions	
that	generate	the	parol	evidence	rule.	Recall	Corbin’s	famous,	though	
not	universally	accepted,	 rationale	 for	 the	rule.264	It	was	not,	he	ar-
gued,	 primarily	 about	 controlling	 self-serving	 frauds	 by	 excluding	
convenient	ex-post	 evidence	of	meaning.265	Rather,	 the	 rule	was	 in-
tended	 to	 give	 priority	 to	 the	 parties’	 fixed	 agreement:	 to	 discard	
those	earlier	agreements,	negotiations	and	understandings	which	had	
not	made	it	into	the	final	and	binding	contract.266	On	the	question	of	
whether	the	parties	 intended	a	particular	expression	to	be	the	final	
expression,	 “no	 relevant	 evidence,	 []	 parol	 or	 otherwise,	 is	 ex-
cluded.”267	But	even	if	admitted,	courts	could	clearly	weigh	such	evi-
dence	and	find	that	“the	more	bizarre	and	unusual	an	asserted	inter-
pretation	is,	the	more	convincing	must	be	the	testimony	that	supports	
it.”268	

	 263.	 See	Hunn,	supra	note	31,	at	281	(“[I]ncreasing	attention	is	given	to	architect-
ing	smart	 legal	contracts	 ‘in	a	 language	that	 is	both	human-intelligible	and	machine	
readable,	whose	 text	 incorporates	an	algorithm	which	automates	some	or	all	of	 the	
performance	of	the	agreement.’”	(quoting	J.G.	Allen,	Wrapped	and	Stacked:	‘SmartCon-
tracts’	and	the	Interaction	of	Natural	and	Formal	Language,	14	EUR.	REV.	CONT.	L.	307,	
313	(2018)).	
	 264.	 See	generally	Arthur	L.	Corbin,	The	Interpretation	of	Words	and	the	Parol	Evi-
dence	Rule,	50	CORNELL	L.Q.	161,	189	(1965)	(“[A]ntecedent	agreements	 .	.	.	are	ren-
dered	inoperative	[evidence]	by	having	been	discharged	by	a	subsequent	agreement	
that	has	been	duly	proved	and	interpreted.”).	
	 265.	 See	 PETER	LINZER,	 CORBIN	ON	CONTRACTS:	PAROL	EVIDENCE	AND	 IMPLIED	TERMS	
§	25.2,	at	6	(rev.	ed.	2010)	(“[Corbin’s]	statement	of	the	[parol	evidence]	.	.	.	had	noth-
ing	to	do	with	the	reliability	of	oral	or	written	evidence	of	intent;	it	had	to	do	only	with	
what	the	parties	actually	wanted	to	be	the	final	word	of	their	agreement.”).	
	 266.	 Id.	
	 267.	 Id.	at	9.	But	see	Klass,	supra	note	213	(describing	some	theorists’	view	that	
integration	also	controls	interpretation	evidence).	
	 268.	 LINZER,	supra	note	265,	§	25.4,	at	32.	

2020]	 TRANSACTIONAL	SCRIPTS	 379	

	

On	this	understanding,	if	a	transactional	script’s	promoters	seem	
to	advance	multiple	potential	purposes	at	odds	with	one	another,	a	
court	ought	to	identify	those	terms	that	best	match	the	reasonable	ex-
pectations	of	the	parties	at	the	moment	that	the	counterparty	commit-
ted	to	the	particular	exchange.	The	existence	of	prior	conflicting	terms	
would	 still	 be	potentially	 relevant,	 but	 they	ought	 to	 be	de-empha-
sized.	

In	applying	this	canon,	consider	the	Synthetix	example	discussed	
above.	One	party	deployed	a	bot	that	took	advantage	of	a	corrupted	
third-party	oracle	to	execute	a	trade	which	would	have	garnered	it	po-
tentially	a	billion	dollars	in	profit.	Presumably	because	that	amount	
would	 have	 been	 uncollectable,	 the	 hacker	 settled	 for	 some	 undis-
closed	bug	bounty,	paid	off-chain.	Neither	party	tested	what	contract	
law	would	have	had	to	say.	But	we	can	speculate	somewhat	as	to	its	
contents.	

Canon	1	reminds	us	to	take	up	all	 the	sources	of	meaning.	A	 li-
cense,	 deployed	 by	 Synthetix,	 disclaimed	 all	 warranties	 as	 to	 the	
Code’s	 correctness.	 But	 its	 commentary	 promised	 that	 the	 quotes	
were	the	“current	market	value.”	Thus,	if	a	court	were	to	ask	if	the	par-
ties	intended	this	result,	the	answer	would	turn,	we	think,	on	the	hier-
archy	in	Canon	3.	In	our	view,	as	between	two	kinds	of	wrapping	nat-
ural	language,	the	commentary	to	the	code	ought	to	take	precedence	
over	the	ambiguous	license,	meaning	that	Synthetix	would	have	a	dif-
ficult	time	arguing	that	whatever	the	oracle	delivered	was,	for	the	par-
ties’	purposes,	actionable	“market	values.”	At	the	very	least,	Synthetix	
should	have	born	a	heavy	burden	of	proving	an	alternative.269	Thus,	
Synthetix,	which	presumably	would	have	 argued	mistake,	 probably	
fairly	bears	the	burden	of	a	third-party	data	source	risk.	

	

	
We	have	suggested	a	set	of	default	rules	for	interpreting	scripts.	

But	what	if	the	parties	want	to	vary	such	rules	by	agreement:	should	
we	 give	 these	 scripted	 integration	 clauses	 force? 270 	Offline,	 courts	

	 269.	 The	 case	would	 have	 been	 different	with	 an	 appropriate	 disclaimer	 in	 the	
terms	of	use,	which	we	have	not	yet	found.	
	 270.	 See	Klass,	supra	note	213,	at	466–71	(discussing	when	integration	clauses	are	
legally	enforceable).	See	generally	Gregory	Klass,	Intent	to	Contract,	95	VA.	L.	REV.	1437,	
1442–43	(2009)	(discussing	the	legal	relevance	of	parties’	intent	with	respect	to	legal	
enforcement).	

Canon	4:	Where	Natural	Language	Contracts	Refer	to	Code,	Inte-
gration	Clauses	Should	Be	Read	Narrowly.	

380	 MINNESOTA	LAW	REVIEW	 [105:319	

	

have	generally	permitted	integration	clauses	to	control	which	pieces	
of	prior	or	contemporaneous	contracting	are	included	within	the	liti-
gated	deal,	 at	 least	 between	 sophisticated	 firms.271	But	 courts	 have	
sometimes	been	dubious	about	attempts	to	integrate	fuzzy	stacks	and	
to	limit	evidence	of	meaning	that	appears	otherwise	relevant.272	

A	problem	here	is	that	sophisticated	projects	will	usually	directly	
refer	 to	 the	 script	 in	 the	natural	 language	 terms	 and	 conditions.	 In	
such	cases,	we	think	it	is	impossible	to	exclude	the	script	entirely—in	
other	words,	we	don’t	think	that	script	can	be	both	pointed	at	and	also	
treated	as	extrinsic	evidence.	That	would	be	much	like	saying	that	an	
addendum	to	a	contract,	which	contains	a	key	description	of	the	rele-
vant	subject	matter,	is	not	a	part	of	the	deal.	

What	parties	might	do	is	to	try	to	use	the	natural	language	con-
tract	 to	determine	meaning.	Natural	 language	 terms	and	conditions	
would	state	that	the	only	operative	promises	are	those	found	in	the	
natural	language	itself,	and	that	parties	should	not	read	the	commen-
tary	in	the	script	to	make	additional	or	contradictory	promises	about	
what	it	accomplishes.	This	would	not	deny	that	the	code	is	a	part	of	
the	bargain,	but	rather	would	attempt	to	 limit	what	can	be	inferred	
from	the	natural	language	text	it	contains.	Or,	the	converse:	that	is,	the	
natural	language	may	deny	its	own	efficacy	and	privilege	code.	

The	choice	of	whether	to	defer	to	such	attempts	to	control	mean-
ing	turns	on	whether	the	court	generally	adopts	a	more	contextual	or	
more	 formalist	 approach	 to	 interpretation.273	Contextualism,	which	
discourages	opportunistic	drafting	and	thus	protects	consumers,	has	

	 271.	 See	Klass,	supra	note	213,	at	475–78	(arguing	for	a	“hard	express	integration	
rule	for	firm-to-firm	negotiated	contracts”).	
	 272.	 Cf.	 LINZER,	 supra	 note	 265,	 §	 25.7,	 at	 61	 (“[T]he	 essence	 of	 integration	 is	
whether	they	intended	a	document	to	be	the	final	word,	and	evidence	of	this	intention	
should	be	found	from	all	sources,	not	just	the	words	of	the	contract.”).	
	 273.	 Compare	Wells	Fargo	Bank,	N.A.	v.	Cherryland	Mall	Ltd.	P’ship,	812	N.W.2d	
799,	810	(Mich.	Ct.	App.	2011)	(admitting	usage	of	trade	notwithstanding	contractual	
clause	stating	that	“no	trade	practices	.	.	.	shall	be	used	to	contradict,	vary,	supplement	
or	modify	any	term	of	this	guaranty	agreement”),	with	S.	Concrete	Servs.,	Inc.	v.	Mable-
ton	Contractors,	Inc.,	407	F.	Supp.	581,	584	(N.D.	Ga.	1975)	(“The	court	recognizes	that	
all	ambiguity	as	to	the	applicability	of	 trade	usage	could	be	eliminated	by	a	blanket	
condition	that	the	express	terms	of	the	contract	are	in	no	way	to	be	modified	by	cus-
tom,	usage,	or	prior	dealings.”).	See	generally	Joshua	M.	Silverstein,	Contract	Interpre-
tation	Enforcement	Costs:	An	Empirical	Study	of	Textualism	Versus	Contextualism	Con-
ducted	via	the	West	Key	Number	System,	47	HOFSTRA	L.	REV.	1011	(2019)	(providing	an	
empirical	study	of	judicial	and	academic	debate	over	textualism	and	contextualism	in	
contract	interpretation);	Lisa	Bernstein,	Custom	in	the	Courts,	110	NW.	U.	L.	REV.	63,	71	
(2015)	(“The	enforceability	and	effectiveness	of	a	general	clause	opting	out	of	all	trade	
usages	is	at	best	unclear.”).	

2020]	 TRANSACTIONAL	SCRIPTS	 381	

	

much	to	commend	it	in	markets	where	sharp	dealing	is	more	preva-
lent.274	Fraud	has	defined	many	blockchain	products	 to	date,	as	has	
incoherent	transactional	lawyering.	This	is	not	a	space	producing	for-
malism’s	best	factual	predicates.		

To	 the	 extent	 these	 issues	 seem	 fanciful,	 consider	 the	 DAO	
hack.275	The	DAO	was	a	token-mediated	platform	that	allowed	small	
investors	 to	enter	 jointly	 into	a	venture	capital	pool.276	The	entity’s	
“terms,”	apart	from	disclaiming	various	legal	rights,	stated	that	“[t]he	
“use	of	The	DAO’s	smart	contract	code	.	.	.	carries	significant	financial	
risk,	 including	 using	 experimental	 software.” 277 	However,	 it	 also	
stated:	

	

	 274.	 See	Silverstein,	supra	note	273,	at	1018	(noting	that	contextualist	courts	con-
sider	both	an	agreement’s	language	and	extrinsic	evidence	to	determine	ambiguity).	
	 275.	 See	Haque	et	 al.,	 supra	 at	52,	 at	39–45	 (providing	an	overview	of	 the	DAO	
hack);	see	also	Laila	Metjahic,	Deconstructing	the	DAO:	The	Need	for	Legal	Recognition	
and	 the	Application	of	Securities	Laws	 to	Decentralized	Organizations,	39	CARDOZO	L.	
REV.	1533,	1536	(2018)	(analyzing	the	corporate	legal	theories	under	which	the	crea-
tors	of	The	DAO	might	be	held	liable	for	the	2016	hack).	
	 276.	 Cf.	 Vitalik	 Buterin,	Bootstrapping	 a	 Decentralized	 Autonomous	 Corporation:	
Part	 I,	 BITCOIN	 MAG.	 (Sept.	 20,	 2013),	 https://bitcoinmagazine.com/articles/	
bootstrapping-a-decentralized-autonomous-corporation-part-i-1379644274	
[https://perma.cc/6FNC-93QV].	
	 277.	 Terms:	 Explanation	 of	 Terms	and	Disclaimer,	DAOHUB,	 https://daohub.org/	
explainer.html	[https://web.archive.org/web/20160704190119/https://daohub	
.org/explainer.html].	

Figure	6:	The	DAO’s	Terms	

382	 MINNESOTA	LAW	REVIEW	 [105:319	

	

	
The	 code	 repository	 contained	an	even	more	 incoherent	 set	of	

disclaimers,	 including	a	readme	file	that	claimed	using	the	software	
“does	not,	in	and	of	itself,	create	a	legally	binding	contract,”	and	that	
“in	order	for	you	to	form	a	legally	binding	contract	.	.	.	you	shall	seek	
legal	 advice	 from	 an	 appropriately	 qualified	 and	 experienced	 law-
yer”278	This	set	of	disclaimers	appears	to	be	an	attempt	to	shield	
the	entity	from	liability	by	at	once	embracing	and	rejecting	contract	
law.279	

After	users	had	contributed	funds,	but	before	the	DAO’s	own	in-
vestments	had	begun,	 someone	noticed	a	 flaw	 in	 its	 code	which	al-
lowed	siphoning	of	$55	million	(of	around	$170	million	total	assets)	
out	of	the	pool.	Ethereum’s	then	developers	promulgated	a	proposed	
software	update	 to	 the	 entire	blockchain—a	hard	 fork—which	was	
adopted	by	some,	but	not	all,	holders	of	the	original	tokens.280	

The	DAO’s	creators	had	some	warning	of	the	vulnerability.281	Be-
fore	the	hack,	a	commentator	posted	about	the	vulnerability	(titled,	
“Protect	 against	 recursive	 withdrawRewardFor	 attack”)	 and	 sug-
gested	a	seemingly	easy	change	(reversing	the	ordering	of	two	lines	of	
code)	which	would	close	it.282	The	DAO	made	the	change,	reassuring	

	 278.	 Stephan	Tual,	Posting	to	/blockchainsllc/DAO:	Updated	Readme,	GITHUB	(Apr.	
11,	2016),	https://github.com/slockit/DAO/commit/aceec3efcc8afd4277396ebc426	
28f2e5ca8dff2#diff-04c6e90faac2675aa89e2176d2eec7d8	 [https://perma.cc/5HHY	
-5W4V].	
	 279.	 For	a	trenchant	analysis	of	these	issues,	see	Drew	Hinkes,	A	Legal	Analysis	of	
the	DAO	Exploit	 and	Possible	 Investor	Rights,	 BITCOIN	MAG.	 (June	21,	 2016),	 https://	
bitcoinmagazine.com/articles/a-legal-analysis-of-the-dao-exploit-and-possible	
-investor-rights-1466524659	[https://perma.cc/XJK6-TCKB].	
	 280.	 Reyes,	 supra	note	30,	at	388;	 see	The	Ethereum	Classic	Declaration	of	 Inde-
pendence,	 ETHEREUM	 CLASSIC,	 https://ethereumclassic.org/ETC_Declaration_of_	
Independence.pdf	[https://perma.cc/F6D5-7FSR]	(last	updated	July	2019)	(declaring	
the	holders’	 intent	to	“continue	the	original	Ethereum	blockchain”	and	decrying	the	
hard	fork	as	a	violation	of	the	blockchain’s	“core	tenets”).	
	 281.	 See,	 e.g.,	 Matthew	 Leising,	 The	 Ether	 Thief,	 BLOOMBERG	 (June	 13,	 2017),	
https://www.bloomberg.com/features/2017-the-ether-thief	[https://perma.cc/N8RJ	
-F7RE]	 (“Gün	 .	.	.	 had	 already	 been	 tracking	 and	 publicizing	 flaws	 in	 the	 DAO’s	 de-
sign.	.	.	.	[He]	appears	to	be	the	first	to	pinpoint	the	flaw	that	put	the	money	in	jeop-
ardy.”).	
	 282.	 LefterisJP,	 Posting	 to	bloackhainsllc/DAO,	 GITHUB	 (June	 12,	 2016),	 https://	
github.com/slockit/DAO/commit/f01f3bd8df5e1e222dde625118b7e0f2bfe5b680?	
diff=split	[https://perma.cc/87ZY-FD5V].	

2020]	 TRANSACTIONAL	SCRIPTS	 383	

	

users	that,	“The	important	takeaway	from	this	is	.	.	.	this	is	NOT	an	is-
sue	that	is	putting	any	DAO	funds	at	risk	today.”283	The	updated	ver-
sion	was	called	The	DAO	1.1	“milestone.”	In	the	code,	the	in-line	com-
ment	 preceding	 the	 new	 revision	 on	 line	 580	 stated	 its	 explicit	
purpose:	

//	we	are	setting	this	here	before	the	CALL()	value	transfer	to	
//	assure	that	in	the	case	of	a	malicious	recipient	contract	trying	
//	to	call	executeProposal()	recursively	money	can’t	be	transferred	
//	multiple	times	out	of	the	DAO284	

	

Assurance	notwithstanding,	someone	then	executed	the	famous	
hack—in	part	 because	The	DAO’s	 fix	was	 incomplete—transferring	
money	multiple	times	out	of	The	DAO.	

Thus,	here	we	again	have	a	stack	of	meaning	about	what	the	par-
ties	 to	 the	 contract—The	 DAO’s	 creators	 and	 its	 investors—ex-
pected.285	But	 the	relevant	documents	are	contradictory.	The	actual	
code	did	not	accomplish	what	the	comment	or	white	paper	promised,	
a	fact	that	soon	became	obvious	to	all.	Moreover,	the	organizers	of	The	
DAO	had	specifically	told	users	that	the	code	governed,	even	as	they	
disclaimed	the	 legal	enforceability	 in	the	code	 itself.286	Let’s	use	the	
canons	to	offer	a	solution	to	the	private	law	contracting	problems	that	
the	DAO	occasioned.	

As	Canon	1	instructs,	we	ought	to	consider	all	the	relevant	pieces	
as	evidence	of	meaning,	and	of	what	was	promised.	The	code,	terms	
and	conditions	and	readme	files	are	all	a	part	of	the	stack.	

Canon	2	suggests	that	the	DAO’s	counterparties	reasonably	could	
have	believed	 that	 they	would	not	 face	 the	risk	of	 recursive	money	

	 283.	 Stephan	Tual,	No	DAO	Funds	at	Risk	Following	the	Ethereum	Smart	Contract	
‘Recursive	Call’	Bug	Discovery,	SLOCK.IT	BLOG	(June	12,	2016),	https://blog.slock.it/no-
dao-funds-at-risk-following-the-ethereum-smart-contract-recursive-call-bug	
-discovery-29f482d348b	[https://perma.cc/2P4D-5QGB].	
	 284.	 LefterisJP,	 supra	 note	 282,	 at	 line	 580,	 https://github.com/slockit/DAO/	
blob/d48ee5c49f9dc3b9548623aa6985cbc3c9528b67/DAO.sol#L580	[https://	
perma.cc/9KTB-7KWJ].	
	 285.	 See	Tanaya	Macheel,	The	DAO	Might	Be	Groundbreaking,	but	Is	It	Legal?,	AM.	
BANKER	 (May	19,	2016,	3:12	PM),	https://www.americanbanker.com/news/the-dao	
-might-be-groundbreaking-but-is-it-legal	 [https://perma.cc/98RV-C7SB]	 (narrating	
Stephan	Tual’s	statement,	a	primary	organizer,	that	“[n]o	one	benefits	from	it	except	
the	people	that	support	it.	Even	we,	the	ones	who	invented	it,	get	nothing”).	
	 286.	 See	generally	Kolber,	supra	note	25,	at	221	(“Note:	Although	the	word	‘con-
tract’	is	used	in	The	DAO’s	code,	the	term	is	a	programming	convention	and	is	not	being	
used	as	a	legal	term	of	art.”).	

384	 MINNESOTA	LAW	REVIEW	 [105:319	

	

transfer.287 	That	 promise,	 embodied	 in	 a	marketing	 announcement	
and	in	the	code	comments	itself,	is,	it	is	true,	absent	in	the	operational	
code.	It’s	as	if	a	door	which	contained	on	its	front	face	a	sign	stating	
“Private	Property:	Locked	Door”	was	freely	openable	with	a	key	hang-
ing	nearby.	If	someone	were	to	have	been	harmed	by	relying	on	that	
set	of	statements,	when	suing	in	fraud	or	tort	they	would	face	ques-
tions	 about	how	reasonable	 their	precautions	had	been.288	But	 in	 a	
contract	lawsuit,	Canon	3	teaches	that	code	should	bow	to	comments	
and	commit	logs	in	a	way	that	best	embodies	what	the	programmers	
intended	to	accomplish	and	therefore	to	what	they	ought	to	be	held.289	
Canon	4	tells	us	to	discount	the	attempts	at	non-integration	as,	at	best,	
confused.	

We	thus	disagree	with	The	DAO’s	attacker,	who	argued	that	the	
fork	violated	its	rights	because	those	actions	were	literally	permitted	
by	the	code.290	Yes,	code	drafters	ought	to	bear	the	interpretative	risk	
of	 error.291 	But	 the	 non-drafting	 counterparties	 whose	 funds	 were	
taken	could	not	reasonably	be	expected	to	know	that	the	code	had	that	
bug,	given	the	commentary	promising	the	opposite	result.	Had	they	
not	received	their	money	back,	The	DAO’s	investors	should	have	been	

	 287.	 See	Rohr,	supra	note	33,	at	89	(noting	analogies	to	vending	machine	cases	to	
find	that	“the	agreement	includes	only	those	terms	that	were	reasonably	available	to	
DAO	Token	holders	prior	to	purchase”	and	 impliedly	concluding	that	 this	would	 in-
clude	the	Terms	of	Use	but	not	the	permissive	code).	
	 288.	 One	 problem	we	 leave	 to	 future	work	 is	 the	 relationship	 between	 putting	
statements	inside	the	contractual	stack	and	the	tort-contract	line	in	litigation.	
	 289.	 Thus,	we	reject	the	idea	that	the	only	operative	promises	are	those	written	in	
code.	Cf.	Lawrence	Lessig,	Code	Is	Law:	On	Liberty	in	Cyberspace,	HARV.	MAG.,	Jan.–Feb.	
2000,	 https://harvardmagazine.com/2000/01/code-is-law-html	 [https://perma.cc/	
59LX-BRU5]	(noting	that	code	implements	values	and	that	coders	decide	how	cyber-
space	regulates).	
	 290.	 A	 Guest,	 An	 Open	 Letter,	 PASTEBIN	 (June	 18,	 2016),	 https://pastebin.com/	
CcGUBgDG	[https://perma.cc/Y739-MR8R]	(claiming	that	the	fork	“would	amount	to	
seizure	of	my	legitimate	and	rightful	ether,	claimed	legally	through	the	terms	of	a	smart	
contract”).	
	 291.	 In	 this	 context,	 perhaps	 all	 participants,	 including	 investors	 and	 program-
mers,	could	be	considered	simply	partners.	See	Stephen	Palley,	How	to	Sue	a	Decentral-
ized	 Autonomous	 Organization,	 COINDESK	 (Mar.	 20,	 2016,	 3:17	 PM),	 http://www	
.coindesk.com/how-to-sue-a-decentralized-autonomous-organization	[https://	
perma.cc/B8L6-M7RM]	 (“A	 DAO	 is	 an	 organization	 that’s	 self-governing	 and	 that	
isn’t	influenced	by	outside	forces.	.	.	.	DAOs	are	formed	by	groups	of	like-minded	indi-
viduals.	.	.	.”).	In	that	event,	agency	law	would	presumably	add	complexity	to	the	inter-
pretative	defaults.	

2020]	 TRANSACTIONAL	SCRIPTS	 385	

	

able	to	bring	an	action	for	breach	against	its	developers,	or	even,	per-
haps,	against	the	attacker	if	its	action	amounted	to	participating	in	the	
nexus	of	contracts	that	The	DAO	had	proposed.292	

C. RECAPITULATING	THE	CANONS:	QUOINE	AND	NON-PUBLIC	SCRIPTS	
We	have	confined	our	analysis	to	the	definition	of	transactional	

scripts	we	offered	in	the	introduction.	Such	scripts	present	a	relatively	
tractable	set	of	problems	for	contract	jurists.	Because	the	scripts	are	
public,	and	participants	typically	are	knowingly	participating	in	a	spe-
cialized	form	of	commerce,	the	sorts	of	concerns	we	might	have	about	
knowledge,	opportunism,	and	black-box	contracts	are,	by	and	large,	
muted.293		

How	to	apply	the	canons	when	parties	are	not	sophisticated	and	
cannot	easily	parse	the	code	at	the	moment	of	the	exchange,	presents	
a	distinct	and	difficult	set	of	questions.	In	the	Quoine	case,	for	example,	
it	is	not	obvious	that	either	side	had	easy	access	to	each	other’s	code.	
Where	parties	cannot	access	code,	it	can’t	communicate	meaning,	no	
matter	how	well	drafted	its	commentary.	Thus,	it	can’t	be	part	of	the	
stack	that	comprised	the	grist	for	the	bargain.		

But	what	happens	when	non-programming	parties	can	access	the	
code	but	there	is	no	social	expectation	that	it	expresses	the	intent	to	
contract:	that	is,	what	about	“smart	contracts”	with	transparent	code,	
but	involving	ordinary	consumers	who	might	not	even	be	aware	that	
their	 contract’s	 execution	 occurs	 automatically?	When	 natural	 lan-
guage	promises	conflicts	with	coded	rules,	should	we	read	them	to-
gether?	One	possibility	is	that	Canon	3,	which	treats	natural	language	
describing	and	commenting	on	code	as	on	the	same	level	as	contract	
terms	themselves,	might	need	recalibration.	Or	it	might	not.	Because	
ordinary	contract	terms	themselves	are	typically	unread,	more	work	
is	necessary	to	consider	which	sorts	of	buried	terms	count	in	making	
bargains.	We	leave	these	problems	to	future	research.	

	 292.	 See	SEC.	&	EXCH.	COMM’N,	EXCHANGE	ACT	RELEASE	NO.	81207,	REPORT	OF	INVESTI-
GATION	PURSUANT	TO	SECTION	21(A)	OF	THE	SECURITIES	EXCHANGE	ACT	OF	1934:	THE	DAO	1,	
7–8	 (2017),	 https://www.sec.gov/litigation/investreport/34-81207.pdf	 [https://	
perma.cc/Q4HV-SZXE]	(suggesting	that	DAO	curators	faced	potential	liability);	see	also	
Hinkes,	supra	note	279	(arguing	that	investors	could	potentially	bring	claims	against	
other	investors	and	DAO	curators).	
	 293.	 See	Gregory	Klass,	How	to	Interpret	a	Vending	Machine:	Smarts	Contracts	and	
Contract	Law	(unpublished	manuscript)	(on	file	with	author),	for	an	in-depth	discus-
sion	of	these	issues.	

386	 MINNESOTA	LAW	REVIEW	 [105:319	

	

IV.		THE	FUTURE	OF	THE	CONTRACT	STACK			
To	 date,	 transactional	 scripts	 haven’t	 delivered	 revolutionary	

change	to	either	the	world	or	our	small,	legal,	corner	of	it.	In	the	big	
picture,	the	ecosystem	is	marginal:	billions	of	dollars	of	investment	in	
a	trillion-dollar	world	economy.	And	yet	the	intellectual	footings	of	the	
script	 project	 are	 expanding	 at	 an	 astounding	 rate.	 Every	day,	 new	
projects	(like	Facebook’s	Libra,	or	JP	Morgan’s	fiat	coin)	launch	with	
scripted	 roots,	 and	 the	 technical	 community	 gains	 experience	 and	
competence	with	each	failure.	We	simply	have	no	idea	what	the	future	
of	coded	exchange	will	look	like.294	

The	relationship	between	this	burgeoning,	but	still	highly	specu-
lative,	 ecosystem	 and	 law	 are	 typically	 described	 as	 antagonistic.	
Thus,	for	noted	commentator	Nick	Szabo,	the	primary	virtue	of	“smart	
contracts”	 is	 that	 they	 ostensibly	 don’t	 need	 law. 295 	For	 others,	
scripted	deals	“will	subject	the	provision	of	 justice	to	market	forces	
and	break	the	state’s	monopoly	over	the	court	system.”296	This	is	an	
ideological	call	to	arms	against	the	civilizing	and	constraining	role	that	
contract	jurists	have	traditionally	had	in	commercial	life.	

Our	approach	is	different.	First,	unlike	some	skeptics,	who	think	
that	transactional	scripts	are	toys	with	no	real	use	cases,	we	believe	
that	 they	 are	 a	 potentially	 valuable	 new	 contracting	 technology.	 It	
might	be	that	scripts	will	reduce	back-end	transactional	costs	by	re-
ducing	the	need	for	transactional	lawyering.297	In	certain	settings,	the	

	 294.	 See	generally	Allen,	supra	note	33,	at	322	(warning	against	 too	heavily	dis-
counting	the	likelihood	of	successful	deployment	of	legal	contracts	in	code).	
	 295.	 See,	 e.g.,	 Nick	 Szabo	 (@NickSzabo4),	 TWITTER	 (Oct.	 14,	 2018,	 5:51	 PM),	
https://twitter.com/NickSzabo4/status/1051606530108190720	[https://perma	
.cc/N5JY-YVED]	(“Worrying	about	whether	a	smart	contract	is	‘legally	enforceable’	re-
flects	a	profound	misunderstanding.	The	main	relation	of	smart	Ks	to	traditional	courts	
is	that	smart	Ks	control	burden	of	lawsuit.”);	see	also	CleanApp,	Why’s	Szabo	Afraid	of	
“Smart	Contract”	Critiques?,	MEDIUM	(Oct.	16,	2018),	https://medium.com/cryptolaw-
review/whys-szabo-afraid-of-smart-contract-critiques-669ef9e63fc0	 [https://perma	
.cc/75CG-5NA3]	(statement	of	Nick	Szabo)	(“The	parties	can	if	they	choose	write	a	tra-
ditional	K	to	backstop	a	smart	K,	although	in	many	situations	where	a	smart	contract	
is	useful	the	exercise	would	be	pointless”).	
	 296.	 Raskin,	supra	note	27,	at	335.	
	 297.	 See	Sklaroff,	supra	note	19,	at	275–77	(noting	that	transactional	scripts	can	
reduce	accounting,	due	diligence,	monitoring,	and	enforcement	costs);	see	also	Wer-
bach	&	Cornell,	supra	note	26,	at	322,	348	(noting	the	ability	of	transactional	scripts	to	
automatically	verify,	facilitate,	and	remedy).	

2020]	 TRANSACTIONAL	SCRIPTS	 387	

	

benefits	from	cutting	enforcement	costs	will	be	worth	the	costs	of	up-
front	 specification.298 	By	 reducing	monitoring	 costs	 on	 the	margin,	
transactional	scripts	may	make	it	more	likely	for	parties	to	enter	into	
the	exchange.	Similarly,	in	regimes	where	institutional	trust	is	at	a	na-
dir	 and	 centralized	 trading	 repositories	 are	 unreliable,	 scripts	 can	
provide	significant	value.299	

And	yet,	this	value	will	have	natural	limits,	defined	by	a	tradeoff	
between	 the	 value	 of	 trustless	 computing	 and	 the	 added	 costs	 im-
posed	by	the	complexity	tax,	whose	scope	we	are	the	first	to	make	con-
crete.	Most	solutions	to	the	complexity	tax	require	either	the	interme-
diation	 of	 third	 parties	 or	 consensus	 protocols	 running	 across	 a	
smaller	set	of	validators.300	Thus,	at	least	for	now,	complex	organiza-
tional	solutions	will	remain	within	“real”	contracts,	while	particular,	
discrete,	computable	aspects	can	be	put	on	public	blockchains.	This	
conclusion	 fits	well	with	 the	most	 sophisticated	guidance	 currently	
available.301		

The	future	of	scripts	is	thus	about	hybrids,	where	code	and	natu-
ral	 language	 must	 work	 together.	 At	 the	 bottom,	 legal	 scholarship	
about	computable	contracts	simply	hasn’t	fully	grappled	with	the	ir-
reducibly	buggy	nature	of	coding.	Errors	in	coded	exchange	will	result	
in	the	parties’	outcomes	stubbornly	failing	to	match	their	goals.	In	our	
view,	the	persistence	of	error,	and	the	hazards	of	determining	intent,	
makes	 recourse	 to	 third-party	 decisionmakers	 inevitable.	 Transac-
tional	scripts	are	not,	and	will	not	be,	self-executing,	at	least	not	all	the	
time.	At	that	point,	such	decisionmakers	will	be	well-advised	to	look	
at	traditional	contract	principles	to	help	resolve	disputes.	

	 298.	 Cf.	Sklaroff,	supra	note	19,	at	283–84	(“Agreements	that	effectively	specify	rel-
evant	commercial	context	are	.	.	.	easier	to	resolve	on	summary	judgement,	reducing	
incentives	to	litigate.”).	
	 299.	 See	 generally	 Eric	Tjong	Tjin	Tai,	Force	Majeure	 and	Excuses	 in	 Smart	 Con-
tracts,	26	EUR.	REV.	PRIV.	L.	787,	787	(2018)	(noting	that	the	main	advantage	of	smart	
contracts	is	guaranteed	performance	due	to	the	absence	of	human	and	legal	interven-
tion).	
	 300.	 Other	 partial	 solutions	 to	 the	 complexity	 tax	 involve	more	 exotic	 forms	 of	
cryptographic	proofs	(such	as	Proof-of-Retrievability	for	storage)	that	can	reduce	re-
dundancy	and	thus	costs.	See,	e.g.,	Andrew	Miller,	Ari	Juels,	Elaine	Shi,	Bryan	Parno	&	
Jonathan	Katz,	Permacoin:	Repurposing	Bitcoin	Work	for	Data	Preservation,	2014	IEEE	
SYMP.	ON	SEC.	&	PRIV.	(proposing	a	modification	to	Bitcoin	that	repurposes	its	mining	
resources	to	distribute	storage	of	archival	data).	The	ultimate	efficacy	and	commercial	
adoption	of	such	schemes	remains	an	open	question.	
	 301.	 Cf.	 INT’L	 SWAPS	&	DERIVATIVES	ASS’N,	 supra	 note	 204	 (providing	 “high-level	
guidance	on	the	 legal	documentation	and	framework	that	currently	governs	deriva-
tives	trading”).	

388	 MINNESOTA	LAW	REVIEW	 [105:319	

	

Our	approach	would	bring	scripts	within	the	traditional	world	of	
contract	law	through	a	constitutive	legal	act:	the	compilation	of	a	con-
tract	stack.	This	solution	is	not	merely	useful	for	the	current	form	of	
transactional	script.	It	has	relevance	for	other	sorts	of	digital	and	al-
gorithmic	contracting,	whether	now	contemplated	or	yet	to	be	imag-
ined.	Code	can	communicate	executory	intent	to	contract	and	can	thus	
be	the	grist	for	legal	analysis.	But,	because	it	is	imperfect,	code-medi-
ated	 transactions	will	often	 fail	 to	achieve	what	 their	promisors	 in-
tend,	even	as	they	are	surrounded	by	communications	in	“real”	 lan-
guages,	intended	to	be	relied	on	by	real	people.	In	such	cases,	law	will	
confront—and	must	surmount—two	temptations:	ignoring	the	code	
altogether	as	a	mere	instrument	of	performance	or	enforcing	it	as	an	
exculpatory	clause	written	in	ciphered	text.		

We	argue	for	an	alternative	approach,	which	first,	claims	transac-
tional	code,	commentary,	and	logs	as	a	part	of	the	contractual	stack,	
capable	of	expressing	meaning	about	 the	parties’	 intent.	We’ve	also	
defined	a	hierarchy	of	meaning	that	situates	natural	language	disclo-
sures	above	artificial	ones.	The	canons	we’ve	proposed,	built	on	an	in-
formed	understanding	of	 the	coding	ecosystem,	predictably	enforce	
the	parties’	reasonable,	publicly	communicated,	intent,	and	will	forbid	
opportunistic	exploitation	of	subtle	errors	in	coding.	These	ought	to	
be	the	law’s	goals	in	compiling	contracts	executed	on	blockchains,	as	
well	as	whatever	forms	of	coded	exchanges	the	future	delivers	to	us.		

	

