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Article 

The Algorithmic Explainability “Bait and 
Switch” 

Boris Babic† and I. Glenn Cohen†† 

Explainability in artificial intelligence and machine learn-
ing (AI/ML) is emerging as a leading area of academic research 
and a topic of significant regulatory concern. Increasingly, aca-
demics, governments, and civil society groups are moving toward 
a consensus that AI/ML must be explainable. In this Article, we 
challenge this prevailing trend. We argue that for explainability 
to be a moral requirement—and even more so for it to be a legal 
requirement—it should satisfy certain desiderata which it often 
currently does not, and possibly cannot. In particular, this Article 
argues that the currently prevailing approaches to explainable 
AI/ML are often (1) incapable of guiding our action and plan-
ning, (2) incapable of making transparent the actual reasons un-
derlying an automated decision, and (3) incapable of underwrit-
ing normative (moral and legal) judgments, such as blame and 
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resentment. This stems from the post hoc nature of the explana-
tions offered by prevailing explainability algorithms. As the Arti-
cle explains, these algorithms are “insincere-by-design,” so to 
speak. This often renders them of very little value to legislators or 
policymakers who are interested in (the laudable goal of) trans-
parency in automated decision-making. There is, however, an al-
ternative—interpretable AI/ML—which the Article will distin-
guish from explainable AI/ML. Interpretable AI/ML can be 
useful where it is appropriate, but presents real trade-offs as to 
algorithmic performance, and in some instances (in medicine and 
elsewhere) adopting an interpretable AI/ML may mean adopting 
a less accurate AI/ML. This Article argues that it is better to face 
those trade-offs head on, rather than embrace the fool’s gold of 
explainable AI/ML. 
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  INTRODUCTION   
From cars to cardiology to Chat GPT-4, our world is increas-

ingly being shaped by Artificial Intelligence (AI) and, even more 
specifically, the sub-type of AI known as Machine Learning 
(ML). As algorithmic decision making systems relying on AI/ML 
models become more prominent across the legal, commercial, 
and medical landscape,1 there is an increasingly vocal push by 
policymakers to require that these algorithms be more explain-
able.2 For example, many scholars argue that the EU General 
Data Protection Regulation (GDPR)3 contains a “right to expla-
nation” for algorithmically generated decisions.4 Likewise, a 
 
 1. See generally Andrew Guthrie Ferguson, Illuminating Black Data Po-
licing, 15 OHIO ST. J. CRIM. L. 503, 504–09 (2018) (discussing use of predictive 
analytics driven by big data in policing); Arthur Rizer & Caleb Watney, Artifi-
cial Intelligence Can Make Our Jail System More Efficient, Equitable, and Just, 
23 TEX. REV. L. & POL. 181, 195 (2018) (examining potential AI applications in 
pretrial detention rulings); Cary Coglianese & Lavi M. Ben Dor, AI in Adjudi-
cation and Administration, 86 BROOK. L. REV. 791, 802–04 (2021) (analyzing 
the use of AI in sentencing and parole determinations); Sofia Ranchordás, Em-
pathy in the Digital Administrative State, 71 DUKE L.J. 1341, 1359–60 (2022) 
(exploring drawbacks to automated decision-making in the administrative 
state); Ashley S. Deeks, Predicting Enemies, 104 VA. L. REV. 1529, 1547 (2018) 
(examining the use of AI in warfare); William Magnuson, Artificial Financial 
Intelligence, 10 HARV. BUS. L. REV. 337, 349–51 (2020) (discussing AI in credit 
ratings, fraud detection, and investment decisions); Ifeoma Ajunwa, An Audit-
ing Imperative for Automated Hiring Systems, 34 HARV. J.L. & TECH. 621, 623 
(2021) (identifying risks of using AI and ML algorithms in hiring); Dana Remus 
& Frank Levy, Can Robots Be Lawyers?: Computers, Lawyers, and the Practice 
of Law, 30 GEO. J. LEGAL ETHICS 501, 512–29 (2017) (assessing the future of 
ML in legal practice); George Maliha et al., Artificial Intelligence and Liability 
in Medicine: Balancing Safety and Innovation, 99 MILBANK Q. 629, 629–30 
(2021) (analyzing liability issues that AI presents in the field of medicine). 
 2. E.g., Algorithmic Accountability Act of 2022, H.R. 6580, 117th Cong. 
(2022) (“A Bill: To direct the Federal Trade Commission to require impact  
assessments of automated decision systems for augmented critical decision  
processes, and for other purposes.”); see also Edmund L. Andrews, Congress Gets 
Serious About Artificial Intelligence, STAN. UNIV. HUM.-CENTERED A.I. (Mar. 8, 
2021), https://hai.stanford.edu/news/congress-gets-serious-about-artificial 
-intelligence [https://perma.cc/T8FY-S292] (considering how “explainability” ex-
pectations vary). 
 3. Council Regulation 2016/679, 2016 O.J. (L 119) 1. 
 4. See Bryce Goodman & Seth Flaxman, European Union Regulations on 
Algorithmic Decision Making and a “Right to Explanation,” 38 A.I. MAG. 50, 55–
56 (2017) (defining the GDPR’s right to “meaningful information about the logic 
involved” as a right to explanation); Andrew D. Selbst & Julia Powles, 
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major piece of Canadian legislation known as Bill C-27,5 or the 
Digital Charter Implementation Act, 2022, would require organ-
izations using an “automated decision system” to provide an ex-
planation of its prediction when requested by a significantly im-
pacted individual.6 Notably for our Article, the Canadian bill 
explicitly states that an explanation must include “the reasons 
or principal factors that led to the prediction.”7 We will return to 
why reason giving is such an important idea below. Turning to 
the United States, while it has tracked behind the EU and Can-
ada in digital regulation, the White House Office of Science and 
Technology Policy’s “Blueprint for an AI Bill of Rights,” released 
on October 4, 2022, mirrors the proposed Canadian digital char-
ter of rights and freedoms by including, among other things, an 
anticipated requirement for “notice and explanation” of algorith-
mic decisions.8 While it is unclear what the notice and explana-
tion requirement would entail, the authors of the blueprint state 
 
Meaningful Information and the Right to Explanation, 7 INT’L DATA PRIV. L. 
233, 235–37 (2017) (finding a right to explanation in a plain reading of the 
GDPR). However, not all scholars agree that the GDPR entails a requirement 
that decision-making algorithms be explainable. See Sandra Wachter et al., 
Why a Right to Explanation of Automated Decision-Making Does Not Exist in 
the General Data Protection Regulation, 7 INT’L DATA PRIV. L. 76, 79–90 (2017) 
(arguing that the GDPR’s right to information is not a meaningful right to ex-
planation); Margot E. Kaminski, The Right to Explanation, Explained, 34 
BERKELEY TECH. L.J. 189 (2019) (differentiating the right to information for 
individuals from the rights of regulators); Sara Gerke et al., Ethical and Legal 
Challenges of Artificial Intelligence-Driven Healthcare, in ARTIFICIAL INTELLI-
GENCE IN HEALTHCARE 295, 322 (Adam Bohr & Kaveh Memarzadeh eds., 2020) 
(describing both sides of the right to explanation debate). 
 5. Digital Charter Implementation Act, Bill C-27, S.C. 2022, 44th Parlia-
ment (Can.) [hereinafter Bill C-27], https://www.parl.ca/DocumentViewer/en/ 
44-1/bill/C-27/first-reading [https://perma.cc/XQ5L-LD2W]. For an overview of 
the major changes the bill proposes, see Jennifer R. Davidson et al., Bill C-27, 
Proposed Amendments to Canada’s Federal Privacy Legislation Affecting Pri-
vate Sector Organizations, 35 INTELL. PROP. J. 71 (2022). 
 6. Bill C-27, supra note 5, § 63(3) (“If the organization has used an auto-
mated decision system to make a prediction, recommendation or decision about 
the individual that could have a significant impact on them, the organization 
must, on request by the individual, provide them with an explanation of the 
prediction, recommendation or decision.”). 
 7. Id. § 63(4) (emphasis added). 
 8. Alondra Nelson et al., Blueprint for an AI Bill of Rights: A Vision for 
Protecting Our Civil Rights in the Algorithmic Age, WHITE HOUSE OFF. OF SCI. 
& TECH. POL’Y (Oct. 4, 2022), https://www.whitehouse.gov/ostp/news-updates/ 
2022/10/04/blueprint-for-an-ai-bill-of-rightsa-vision-for-protecting-our-civil 
-rights-in-the-algorithmic-age [https://perma.cc/X7HU-33MR]. 
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that the purpose of the notice and explanation is to allow one to 
understand “how and why [an automated system] contributes to 
outcomes that impact you.”9 It seems plausible that providing 
the requisite notice and explanation would require the proprie-
tors of automated decision-making systems to produce reasons 
or factors for why certain decisions were made the way they 
were, and that these factors should be transparent enough to al-
low for a review of the decision.10 

This trend has not gone unnoticed by academics, many of 
whom champion the importance of transparency. For example, 
some authors argue that algorithmic decision-making “gives rise 
to a ‘right to explanation.’”11 Sandra Wachter, while maintaining 
that the GDPR does not in general give rise to a right to expla-
nation, believes the law should incorporate indirect ways of 
providing explanations without “opening the black box.”12 “In-
deed, a near-consensus is emerging in favor of explainable 
AI/ML among academics, governments, and civil society 

 
 9. Id. 
 10. In U.S. administrative law, for example, reviewing courts often give 
wide deference to agency decisions. See Balt. Gas & Elec. Co. v. Nat. Res. Def. 
Council, Inc., 462 U.S. 87, 103 (1983) (“[A] reviewing court must remember that 
the Commission is making predictions[] within its area of special expertise . . . . 
When examining this kind of scientific determination . . . a reviewing court 
must generally be at its most deferential.”); cf. Chevron, U.S.A. Inc. v. Nat. Res. 
Def. Council, Inc., 467 U.S. 837, 844 (1984) (showing that the reviewing court 
must still be able to understand an agency decision well enough to determine 
whether it was based on a consideration of the relevant factors and reasons); 
SEC v. Chenery Corp., 318 U.S. 80, 94–95 (1943) (ruling that a reviewing court 
may uphold agency action only on grounds the agency relied on when it acted). 
 11. Tae Wan Kim & Bryan R. Routledge, Why a Right to an Explanation of 
Algorithmic Decision-Making Should Exist: A Trust-Based Approach, 32 BUS. 
ETHICS Q. 75, 75 (2022). 
 12. Sandra Wachter et al., Counterfactual Explanations Without Opening 
the Black Box: Automated Decisions and the GDPR, 31 HARV. J.L. & TECH. 841, 
878 (2018); see also Ashley Deeks, The Judicial Demand for Explainable Artifi-
cial Intelligence, 119 COLUM. L. REV. 1829, 1835–37 (2019) (examining how dif-
ferent approaches for explaining algorithmic decisions may become relevant in 
courts); Katherine J. Strandburg, Rulemaking and Inscrutable Automated De-
cision Tools, 119 COLUM. L. REV. 1851, 1863–64 (2019) (analyzing the “im-
portant functions associated with accountability” in explanations of algorithms’ 
decision criteria). But see Cynthia Rudin, Stop Explaining Black Box Machine 
Learning Models for High Stakes Decisions and Use Interpretable Models In-
stead, 1 NATURE MACH. INTEL. 206, 206 (May 2019) (arguing that, rather than 
“trying to explain black box models,” designers should build ML models that are 
“inherently interpretable”). 
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groups.”13 There is now a very large literature on explainable 
AI/ML.14 The literature claims that explainable AI/ML systems 

 
 13. Boris Babic et al., Beware Explanations from AI in Health Care, 373 
SCIENCE 284, 284 (2021). For examples of techniques used to render AI explain-
able, see Marco Tulio Ribeiro et al., “Why Should I Trust You?”: Explaining the 
Predictions of Any Classifier, 22 ACM SIGKDD INT’L CONF. ON KNOWLEDGE 
DISCOVERY & DATA MINING PROC. 1135, 1135 (2016); Scott Lundberg & Su-In 
Lee, A Unified Approach to Interpreting Model Predictions, NIPS'17: PROC. OF 
THE 31ST INT’L CONF. ON NEURAL INFO. PROCESSING SYS. 4768, 4768 (2017); 
Cynthia Rudin & Joanna Radin, Why Are We Using Black Box Models in AI 
When We Don’t Need to? A Lesson from an Explainable AI Competition, 1 HARV. 
DATA SCI. REV., Fall 2019, at 1. 
 14. See generally Deeks, supra note 12 (surveying a range of approaches to 
explaining AI identified in research); Ribeiro et al., supra note 13 (proposing a 
method for explaining ML predictions); Lundberg & Lee, supra note 13 (intro-
ducing one method of explaining AI); Babic et al., supra note 13 (identifying 
flaws in explainable AI); PROC. OF ICML 2021 WORKSHOP ON THEORETIC FOUN-
DATION, CRITICISM, AND APPLICATION TREND OF EXPLAINABLE AI (2021), 
https://arxiv.org/abs/2107.08821 [https://perma.cc/Q3NM-DARP] (reviewing 
trends as well as outstanding questions in explainable AI); Muhammad Suffian 
et al., FCE: Feedback Based Counterfactual Explanations for Explainable AI, 10 
IEEE ACCESS 72363 (2022) (proposing new method for explainable AI); Sindhu 
Ghanta et al., Interpretability and Reproducability in Production Machine 
Learning Applications, in 17TH IEEE INT’L CONF. ON MACH. LEARNING & AP-
PLICATIONS 658 (2018) (examining questions in state of art for explainable AI); 
Katie Atkinson et al., Explanation in AI and Law: Past, Present and Future, 289 
A.I. 103387 (2020) (surveying evolution of explainable AI); MARCO IANSITI & 
KARIM R. LAKHANI, COMPETING IN THE AGE OF AI: STRATEGY AND LEADERSHIP 
WHEN ALGORITHMS AND NETWORKS RUN THE WORLD (2020) (examining certain 
practical ramifications of explainability in AI); Erwan Le Merrer & Gilles 
Trédan, Remote Explainability Faces the Bouncer Problem, 2 NATURE MACH. 
INTEL. 529 (2020) (demonstrating why explainable AI will not facilitate account-
ability for only accessible to users through a service provider’s network); see also 
infra notes 15–18 (collecting literature on explainable AI and ML). 
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are more trustworthy,15 easier to understand,16 safer,17 and more 
accountable/transparent.18 For example, Scott Lundberg and Su-
In Lee write: “[t]he ability to correctly interpret a prediction 
model’s output . . . . engenders appropriate user trust . . . and 

 
 15. See Ribeiro et al., supra note 13, at 1136 (“[E]xplaining predictions is 
an important aspect in getting humans to trust and use machine learning effec-
tively, if the explanations are faithful and intelligible.”); MARK COECKELBERGH, 
A.I. ETHICS 118 (2020) (“[A] lack of transparency leads to less trust in the tech-
nology and in the people who use the technology.”); Mary-Anne Williams, Ex-
plainable Artificial Intelligence, in RESEARCH HANDBOOK ON BIG DATA LAW 
318, 325–27 (Roland Vogl ed., 2021) (discussing factors that makes AI trustwor-
thy); Will Knight, The Dark Secret at the Heart of AI, 120 MIT TECH. REV., 
May/June 2017, at 55, 61 (“Ruslan Salakhutdinov, director of AI research at 
Apple and an associate professor at Carnegie Mellon University, sees explaina-
bility as the core of the evolving relationship between humans and intelligent 
machines. ‘It’s going to introduce trust,’ he says.”). 
 16. See Matt Turek, Explainable Artificial Intelligence (XAI), DEF. AD-
VANCED RSCH. PROJECTS AGENCY, https://www.darpa.mil/program/explainable 
-artificial-intelligence [https://perma.cc/ZBP4-UAN2] (“Explainable AI—espe-
cially explainable machine learning—will be essential if future warfighters are 
to understand, appropriately trust, and effectively manage and emerging gen-
eration of artificially intelligent machine partners.”); COECKELBERGH, supra 
note 15, at 117 (“[W]ith some…AI systems, notably AIs that use machine learn-
ing and in particular deep learning that uses neural networks…. It is no longer 
transparent how the AI comes to its decision, and humans cannot fully explain 
the decision.”); see also Williams, supra note 15, at 327 (outlining differences 
between explainability and interpretability). 
 17. See Yan Jia et al., The Role of Explainability in Assuring Safety of Ma-
chine Learning in Healthcare, 10 IEEE TRANSACTIONS ON EMERGING TOPICS 
COMPUTING 1746, 1747 (2022) (explaining that one of the primary contributions 
of this paper is the development of a conceptual model relating safety to certain 
factors—including explainability—of ML-based systems); Éloi Zablocki et al., 
Explainability of Deep Vision-Based Autonomous Driving Systems: Review and 
Challenges, 130 INT’L J. COMPUT. VISION 2425, 2425–46 (2022) (describing how 
explainablility is important for ensuring the safety of autonomous driving sys-
tems). 
 18. See Rebecca Crootof et al., Humans in the Loop, 76 VAND. L. REV. 429, 
453 (2023) (“There is a growing body of case law where algorithmic decisions 
were invalidated on procedural due process grounds.”); COECKELBERGH, supra 
note 15, at 122–23 (observing that “[e]xplainability is a necessary condition for 
responsible . . . decisions” and that AI, at least with the help of humans, “should 
be able to” explain its reasoning). See generally Finale Doshi-Velez et al., Ac-
countability of AI Under the Law: The Role of Explanation (Berkman Klein Ctr. 
For Internet & Soc’y at Harv. Univ., Working Paper) (archived at https://perma 
.cc/KAC3-HCVQ) (“By exposing the logic behind a decision, explanation can be 
used to prevent errors and increase trust. Explanations can also be used to as-
certain whether certain criteria were used appropriately or inappropriately in 
case of a dispute.”). 
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supports understanding of the process being modeled.”19 Simi-
larly, Marco Tulio Ribeiro and his coauthors write: “[u]nder-
standing the reasons behind predictions . . . is fundamental if 
one plans to take action based on a prediction, or when choosing 
whether to deploy a new model.”20 

We do not disagree with these sentiments insofar as they 
suggest that these are desirable features of an AI/ML system. 
The problem, this Article argues, is that explainable AI/ML mod-
els fundamentally fail to achieve these goals: these models fail 
to assist users in both correctly interpreting a model and in un-
derstanding the true reasons or principal factors behind the 
model’s predictions. Specifically, this Article argues that there 
are three cardinal shortcomings of current explainable AI/ML 
systems, stemming from three features of the explanations these 
models generate: (1) they are not unique, (2) they are not sin-
cere, and (3) they are produced after the fact. 

First, explanations produced by explainable AI/ML algo-
rithms purport to be action guiding, but they are not. We explain 
why they are often inadequate for guiding our behavior or assist-
ing us in planning about the future. Second, and related, ex-
plainable AI/ML algorithms purport to shine a light on the ac-
tual (or otherwise put, motivating) reasons behind a decision. If 
successful, this would help garner trust, encourage usage, and 
better enable the review of decisions. But, we argue, these mod-
els often fail to identify the actual reasons for a decision, provid-
ing instead the “fool’s gold” of a post-hoc explanation that may 
not underlie the actual decision. Finally, explanations can be 
valuable insofar as they can underwrite normative judgments 
such as blame and praise.21 These attitudes are intimately re-
lated to evaluating an agent’s quality of will—are they blame-
worthy or praiseworthy in their behavior? In assigning blame 
and praise for a human agent, one usually needs to know the 
reasons that motivate their behavior—why they did what they 

 
 19. Lundberg & Lee, supra note 13, at 1. 
 20. Ribeiro et al., supra note 13, at 1135. 
 21. In philosophy, these are often called the second person, or Strawsonian, 
reactive attitudes. See P.F. Strawson, Freedom and Resentment, in FREEDOM 
AND RESENTMENT, AND OTHER ESSAYS 1, 4–6 (1974). 
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did.22 But the kind of explanations that explainable AI/ML gen-
erates often cannot help us to do this—they cannot help us un-
derstand why the automated decision was made the way it was, 
nor can they help us understand the actual reasons or factors 
that led to it. As a result, the explanations cannot let us know 
whether we are right to feel one of these reactive attitudes to-
ward the algorithm. 

While one contribution of this paper is to explain these three 
shortcomings of explainable AI, a second contribution is to show 
that there is an alternative that does satisfy the desiderata that 
supporters of explainable AI/ML argue for—what we and others 
call “interpretable” AI/ML.23 We explain, at the outset of our 
analysis, what it is and how it differs from explainable AI/ML. 
In short, interpretable AI/ML uses simple, and usually additive, 
models that are intuitive and transparent, such as linear regres-
sions and shallow decision trees. But while interpretable AI/ML 
can do some of what the cheerleaders for explainable AI/ML de-
sire, adopting a legal requirement of interpretability in auto-
mated decisions has its own costs and prompts hard trade-offs: 
in some cases, the most sophisticated and accurate algorithms 
cannot be designed as interpretable AI/ML. Ultimately, we ar-
gue it is better to face these trade-offs head on rather than to 
pretend that explainable AI/ML can provide the kind of explana-
tion we want without trade-offs. Explainable AI/ML, as cur-
rently understood, is therefore an attempt to have our cake and 
eat it too. 

This paper proceeds as follows. Part I provides more back-
ground on explainable AI/ML and some of the literature extol-
ling its virtues. This Part also explains in greater depth the dif-
ferences between interpretable versus explainable AI/ML. 
Finally, this Part provides a synthetic (by which we mean hypo-
thetical and simplified) example for illustration, which we re-
turn to throughout the paper. Part II focuses on the first short-
coming discussed above: post hoc algorithmic explanations of the 
form generated by leading explainability algorithms, which fail 
to be effectively action-guiding. Part III focuses on the second 

 
 22. Cf. Zoë A. Johnson King, Praiseworthy Motivations, 54 NOÛS 408, 409–
11 (2020) (defending a philosophical view for how to assess the morality of one's 
motivations). 
 23. See, e.g., Rudin, supra note 12 (discussing importance of interpretabil-
ity, rather than explainability, for action-guiding models). 
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shortcoming of leading explainability algorithms—that they fail 
to provide sincere explanations/motivating reasons for the un-
derlying automated decisions.24 In Part IV, we consider the ex-
tent to which interpretability should be a legal requirement, and 
under what conditions. Finally, in our Conclusion, we summa-
rize and also discuss, without fully developing, the last short-
coming of these explainability algorithms: that they cannot sup-
port reactive attitudes like blame and praise. 

I.  WHAT IS EXPLAINABLE AI/ML?   
Our goal in this Part is for the reader to firmly understand 

what explainable AI/ML algorithms do and do not do. To under-
stand their limitations, we must first distinguish explainable 
from interpretable AI/ML.25 Before we can do this, though, we 
start with a very general overview of supervised learning.  

A word of comfort: while in the next few sections we use 
some formal mathematical notation (Xs, Ys, and even some 𝛽s!), 
they are not essential for understanding our main arguments—
we offer them for readers who want a slightly more technical ex-
planation. Indeed, in Section I.C we use a synthetic and intuitive 
example to explain all these points in a more illustrative way. 
Readers daunted by the more technical materials can skip ahead 
to that section. 

A. SUPERVISED LEARNING MODELS 
A typical supervised machine learning or classification 

model (i.e., a model trained on structured data with labeled fea-
tures) is effectively a way of solving a function estimation prob-
lem using certain optimization techniques. We wish to estimate 
the response, y (for example, a person’s age), as a function of 
 
 24. See Mathilde Cohen, Sincerity and Reason-Giving: When May Legal De-
cision Makers Lie, 59 DEPAUL L. REV. 1091, 1095–96 (2010) (exploring why sin-
cerity in the reasoning for decisions is necessary in the legal system); Micah 
Schwartzman, Judicial Sincerity, 94 VA. L. REV. 987, 1013–15 (2008) (arguing 
for a requirement that judges are sincere in the reasoning for their decisions); 
W. Bradley Wendel, Truthfulness and the Rule of Law, 35 NOTRE DAME J.L. 
ETHICS & PUB. POL’Y 795, 816–17 (2021) (emphasizing the importance of accu-
rately representing the reasons for a government action—and not merely justi-
fying it—in adversarial adjudications). 
 25. See Babic et al., supra note 13 (“It is important to first distinguish ex-
plainable from interpretable AI/ML. These are two very different types of algo-
rithms with different ways of dealing with the problem of opacity . . . .”). 
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some features, x1, . . . , xn (for example, the person’s height and 
weight). This is a statistical learning task, in part because the 
way we are going to estimate this relationship is by examining 
the available data (in our toy example, that would be data on 
people’s ages, heights, and weights). Accordingly, we estimate 
that function by fitting a model to the available data. To fit a 
model is to solve some optimization problem. For instance, in a 
typical linear regression model, we have y = 𝛽xT, where 𝛽xT is 
the inner product of a vector of the linear model’s parameter co-
efficients, (𝛽0, 𝛽1, …, 𝛽n), and the transpose of the vector of input 
variables, (x1, x2, …, xn). We would then search for the line of best 
fit, where best is defined in terms of minimizing the sum of 
squared distances between each point’s estimated value and its 
true value. That is, we choose 𝛽 so as to minimize (y − 𝛽x)T(y − 
𝛽x). For each point, this is the squared difference between y and 
𝛽xT (omitting the subscript i). In more general classification 
tasks, the basic ingredients are the same: our goal is to identify 
a function, (f), that will best classify items on the basis of past 
observations, where best is defined in terms of minimizing a cer-
tain loss function. For each point, (i), the loss is given by l(yi, 
f(xi)). In linear regression, l(y, f(x)) = (y − f(x))2. 

It is often the case that the output we are interested in is a 
probability, and sometimes the ultimate decision is a function of 
that probability. For example, suppose that we wish to classify a 
group of people according to their political orientation and sup-
pose (to make things simple) everyone will be labeled either lib-
eral or conservative. For each person, the algorithm could pro-
duce a probability that the person is liberal or conservative. And 
we could then program the algorithm to make a threshold deci-
sion—namely, we will say the person is liberal/conservative if, 
and only if, the predicted probability that they are liberal/con-
servative exceeds 50%. If there are more than two categories, 
then we would assign each person to the category that they are 
most probably predicted to belong to. (With many categories, 
that could be significantly less than 50%.) 

B. INTERPRETABILITY VERSUS EXPLAINABILITY 
Now suppose we have a classification model given by y =f(x1, 

…, xn), where f is the estimate (model) of the true but unknown 
underlying function—let’s call it g—relating the features (x1, …, 
xn) to the prediction (y). We will say that an AI/ML model f is 
interpretable (sometimes called intelligible) if an ordinary 
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person can understand how any individual, (xi), contributes to 
the prediction.26 Let’s call this a “white-box,” or “transparent,” 
model. The paradigmatic examples of interpretable, or white-
box, models are linear models or decision trees.27 In linear re-
gression, it is easy to understand that the predicted y is given by 
𝛽0 + 𝛽1x1 + … + 𝛽nxn. This is simple, additive, and generally in-
tuitive. Consider an extremely naive example: we might say that 
a person’s height (in cm) is given by 15 (the y-intercept) + 1.1 ✕ 
their weight (in lbs.). Hence, we would predict that someone who 
weighs 145 lbs. is 15 + 1.1 ✕ 145 = 174.5 cm tall. This works out 
okay for average values but is not a particularly good model for 
low-weight individuals. In any case, the idea is extremely sim-
ple: take a person’s weight, multiply it by some coefficient, and 
add a fixed “benchmark” value, so to speak. The mechanics be-
hind the prediction are very easy to comprehend. 

While this is a helpful way of thinking about interpretabil-
ity, it is not a perfectly general or objective definition, as it de-
pends on a user’s subjective level of expertise or understanding. 
For example, logistic regression is a type of linear model where 
the output is a probability. It uses a link function between the 
response and the predictors, with the effect that the log odds are 
linear in the feature variables. Some authors refer to such AI/ML 
models as interpretable.28 While not implausible, this assumes 
quite a lot of statistical understanding on behalf of a user—for 
example, that the model’s linearity is on a log scale, and that it 
relates the predictors to the probability in odds form. 

What this leads us to is the idea that a perfectly general def-
inition of interpretability in the form of a set of necessary and 

 
 26. See Yin Lou et al., Intelligible Models for Classification and Regression, 
in KDD’12: PROC. OF THE 18TH ACM SIGKDD INT’L CONF. ON KNOWLEDGE DIS-
COVERY & DATA MINING 150, 150 (2012), (“By interpretability we mean that 
users can understand the contribution of individual features in the model . . . .”). 
 27. Zachary C. Lipton, The Mythos of Model Interpretability: In Machine 
Learning, the Concept of Interpretability Is Both Important and Slippery, 16 
ACM QUEUE, May/June 2018, at 1, 14 (“[One] notion of transparency might be 
that each part of the model—input, parameter, and calculation—admits an in-
tuitive explanation. . . . For example, each node in a decision tree might corre-
spond to a plain text description . . . .”). 
 28. E.g., Sheikh Rabiul Islam et al., Explainable Artificial Intelligence Ap-
proaches: A Survey, 3, (arXiv, Working Paper No. 2101.09429v1, 2021) (archived 
at https://perma.cc/S7JZ-UXTQ). 
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sufficient conditions is probably not possible to provide.29 Ra-
ther, it is better to think of interpretability as existing on a spec-
trum, whereby some models are obviously opaque black boxes, 
such as a convolutional neural network30 with millions of train-
able parameters, while others are canonically transparent, such 
as a linear model with a few predictors or a decision tree with 
two or three “if then” statements.31 Often, deciding whether or 
not an AI/ML model is interpretable is, in the words of Justice 
Potter Stewart, an instance of “I know it when I see it.”32 An or-
dinary regression model with one or two variables, such as our 
example above of predicting a person’s weight on the basis of 
their height, is clearly interpretable. A deep neural network with 
millions of parameters is clearly not interpretable. But explicitly 
articulating the boundary of interpretability is no easy feat. 

Explainability is very different from interpretability. It does 
not lie anywhere on the interpretability spectrum. Explainable 
AI/ML attempts to accomplish the following entirely different 
task: given a black-box model f (say, a convolutional neural net-
work), an explainable AI/ML algorithm constructs an interpret-
able function, (h), (perhaps a linear model), which approximates 
f as closely as possible on the available data. In other words, h is 
a second, separate function whose goal is to predict as closely as 
possible to f. To return to our prior notation, we called the true 
but unknown function relating the inputs to the output g. Ex-
plainability is not concerned with approximating g. Rather, the 
goal of h is to replicate f, the black-box model, faithfully. 

The idea is that we can use the black-box to make the origi-
nal prediction and then use the white-box approximation of that  
  
 
 29. Cf., Babic et al., supra note 13, at 284 (“A substantial proportion of 
AI/ML based medical devices that have so far been cleared or approved by the 
US Food and Drug Administration (FDA) use noninterpretable black-box mod-
els, such as deep learning. . . . This may be because black box models are deemed 
to perform better in many health care applications, which are often of massively 
high dimensionality, such as image recognition or genetic prediction.”). 
 30. Convolutional neural networks are a type of neural network frequently 
used in image recognition and similar tasks where the data “has a known grid-
like topology.” IAN GOODFELLOW et al., DEEP LEARNING 321 (2016). 
 31. See Babic et al., supra note 13, at 284 (noting that even the AI/ML con-
sidered interpretable “may not be immediately understandable by everyone” 
and discussing challenges of explaining AI/ML “not understandable at an ordi-
nary human level” due to a range of factors). 
 32. Jacobellis v. Ohio, 378 U.S. 184, 197 (1964) (Stewart, J., concurring). 
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black-box to provide an explanation to a user who requests it. As 
Cynthia Rudin puts it, “an explanation is a separate model that 
is supposed to replicate most of the behavior of a black box.”33 

Hence, the explainability algorithm explains the black-box 
model (i.e., the estimated f) by finding a function similar to it 
(i.e., h) and not the underlying relationship being modeled (i.e., 
g). 

Unlike interpretable AI/ML, explainable AI/ML does not at-
tempt to replace the black-box with a transparent one. Rather, 
it aims to approximate the behavior of a black-box as closely as 
possible with a second box that is itself transparent. It follows 
from this that explainable AI/ML cannot perfectly track a black-
box’s behavior across the full feature space—if it could, then the 
explainable AI/ML would by definition be equivalent to the 
black-box model—f = h.34 Hence, this form of explainable AI/ML 
provides a post-hoc rationalization of a black-box prediction. 
This is the key to our argument and to our critique of the norma-
tive value of explainable AI/ML. We will return to this flaw 
throughout the Article. 

Thus far, we have made our claims as to explainable AI/ML 
generally. Now let us zoom in on one particular leading explain-
ability algorithm, LIME (which stands for Local Interpretable 
Model-Agnostic Explanations), developed by Marco Ribeiro and 
his colleagues.35 While we focus on LIME to illustrate our argu-
ments, we emphasize that our criticisms are not limited to this 
algorithm. Our point is more generally about the limited value, 
from a law and policy perspective, of the kinds of explanations 
that techniques like LIME can produce. Once again, a word of 
reassurance: this is a more technical discussion—readers not 
comfortable with mathematical notation may want to skip it and 
move straight on to Section I.C, which develops similar points 
with a more intuitive example. 

 
 33. Rudin, supra note 12, at 2. 
 34. See Rudin, supra note 12, at 4 (discussing how explainable AI provides 
an explanation that is “not faithful to what the original model computes”). 
 35. See generally Ribeiro et al., supra note 13 (“In this work, we propose 
LIME, a novel explanation technique that explains the predictions of any clas-
sifier in an interpretable and faithful manner, by learning an interpretable 
model locally around the prediction.”). 
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1. The LIME Algorithm 
Ribeiro and his co-authors begin with the notion of an inter-

pretable data representation: x ∈ Rd ⟶ x′ ∈ {0, 1}d’.36 The idea is 
that the original features (for example, numerical pixel values)37 
may not be understandable by humans, while interpretable data 
representations are (for example, whether a certain natural lan-
guage word is absent or present).38 Hence, x corresponds to the 
original vector of features associated with the instance we wish 
to provide an explanation for, and x′ corresponds to a binary vec-
tor of its interpretable representation. 

Next, we “define an explanation as a model g ∈ G, where G 
is a class of potentially interpretable models, such as linear mod-
els . . . . [and] [t]he domain of g is {0, 1}d’.”39 To better understand 
Ribeiro and his colleagues, let us now introduce a measure of 
complexity, Ω(g), which could, for example, correspond to the 
number of meaningful weights in a linear model.40 We now have 
our black-box model, f. Then, we define a notion called locality: 
πx(z) is “a proximity measure between an instance z to x.”41 This 
is because we want explanations to be locally faithful even if they 
cannot perfectly approximate f across the whole space (a concept 
we might call global faithfulness). 

Next, we introduce a penalty for infidelity: ℒ (f, g, 𝜋x) is “a 
measure of how unfaithful g is in approximating f in the locality 
defined by 𝜋x.”42 The informal idea is then to minimize ℒ and 
keep Ω(g) low enough. LIME is then the solution to the following 
optimization problem43: 

 

 
 36. Id. at 1137. 
 37. For grayscale images, these are integers between 0 and 255, which rep-
resent the gray color intensity of every pixel corresponding to a larger image. 
Himanshi Singh, How Are B&W or Grayscale Images Stored on a Computer?, 
ANALYTICS VIDHYA, https://www.analyticsvidhya.com/blog/2021/03/grayscale 
-and-rgb-format-for-storing-images [https://perma.cc/8STS-6Q4J]. 
 38. Cf. Ribeiro et al., supra note 13, at 1137 (noting that interpretable data 
representations may need to be understandable at the expense of actual fea-
tures). 
 39. Id. 
 40. Id. 
 41. Id. 
 42. Id. 
 43. Id. 
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𝜉(𝑥) = 		𝑎𝑟𝑔𝑚𝑖𝑛!∈#ℒ(𝑓, 𝑔, 𝜋x)	+𝛺(𝑔). 

Now if we assume that G is limited to linear models, and 
also that ℒ is a proximity weighted square error loss, we obtain:  

 
ℒ(𝑓, 𝑔, 𝜋x) = ∑ 		

%,%'∈Ƶ	 𝜋x(𝑧)[𝑓(𝑧) − 𝑔(𝑧′)]2.44 

A few things to notice from these expressions: an explana-
tion is generated for a particular instance; hence, for different 
instances it need not be the same explanation. How to select a 
loss is not something we can answer mathematically. Least 
squares is a convenient and well-understood method,45 but there 
are many other options—for example, L1 distance46 or cross-en-
tropy.47 We also need to select Ω (the measure of complexity) and 
𝜋 (the measure of fidelity), and this too is not something we can 
uniquely determine mathematically. Finally, we need to identify 
G, and this is perhaps the most difficult part of the problem—
what is the class of all interpretable models? Ribeiro and his col-
leagues make a simplifying assumption and treat G as linear 
models,48 but this is both over and under inclusive—some inter-
pretable models need not be linear (for example, the classic sin-
gle-layer perceptron), and some linear models can get very com-
plex (for example, a Cox survival model is linear in the log of the 
parameters, and it can have millions of trainable features). By 
assuming that G is limited to linear models, Ribeiro et al. effec-
tively show how we can approximate any model with a linear 
model. They do not shed light on what it takes for a model to be 
interpretable—they simply take for granted that linear models 
are interpretable. 

 
 44. Id. at 1337–38. 
 45. Least squares is a common form of linear regression that identifies a 
line segment (or, more generally, an n-dimensional hyperplane) in which the 
sum of the squares of the distances between the observed data points and the 
line segment is minimized. JULIAN J. FARAWAY, LINEAR MODELS WITH R 14–15 
(Chapman & Hall 2005). 
 46. See id. at 107 (explaining L1 regression). 
 47. TREVOR HASTIE et al., THE ELEMENTS OF STATISTICAL LEARNING: DATA 
MINING, INFERENCE, AND PREDICTION 31–32 (2d ed. 2016) (explaining cross-en-
tropy modeling). 
 48. Ribeiro et al., supra note 13, at 1137–38. 
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C. AN ILLUSTRATION 
The prior two sections may have felt abstract or heavy on 

the mathematical notation. In this Section we try to show the 
same points in a more intuitive way by developing a synthetic 
example, “The MIT School of Law”—entirely fictitious—whereby 
a law school is trying to design algorithms to help with its ad-
mission criteria. This example is complex enough to illustrate 
the main problems with current attempts at explainability but 
by design an overly simplistic hypothetical approach to the prob-
lem of admissions, a sort of “toy” problem. 

1. The MIT School of Law 
Suppose that having opened its brand-new, tech-savvy law 

school—we will call it “MIT Law” for short—MIT Law is inter-
ested in automating its admissions process. To do this, the school 
will use admissions data obtained from peer schools for the last 
ten years in order to estimate a certain model, which it will then 
employ to make admissions decisions for its very first class of 
MIT Law students. 

What makes the MIT Law example particularly stylized is 
that we binarize everything—in our toy problem, there are “ad-
missible students” and “inadmissible students,” and all students 
fall into one category or the other. Information about students 
(such as their LSAT and GPA) is then used as latent indicators 
of admissibility. The other reason this example is a little bit fan-
ciful is because it is not clear what “admissibility” means; it is 
not clear that any such generalized aptitude for law practice ex-
ists, and even if it does, it is not clear that it is measurable.49 At 
the same time, there does exist something that law schools are 
trying (very likely imperfectly) to measure. All that is required 
for our toy example is the idea that the new MIT Law is trying 
to do what other law schools are doing by way of an algorithm. 

While one could try to implement a real-life model like this, 
and define admissibility in terms of, for example, predicted law 

 
 49. Though, to be fair to our toy model, one could say the same (and many 
scholars have) about latent measures of aptitude such as IQ, which are also not 
directly measurable. See, e.g., Han L.J. Van der Maas et al., Intelligence Is What 
the Intelligence Test Measures. Seriously, 2 J. INTEL. 12, 12–15 (2014) (observing 
that intelligence tests cannot identify what they measure and “there really is 
no such thing as a separate latent variable that we could honor with the term 
‘intelligence’”). 
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school GPA, or in terms of the probability of passing the bar 
exam, in reality it would likely be a bad idea to assume that all 
students can be divided as such. Usually there are many com-
peting considerations; we would like to have an intellectually 
and demographically rounded class while understanding that 
different students bring different skills to their cohort.50 There 
are also synergistic group dynamics so that the success of a class, 
however defined, can depend on the composition of the group it-
self—for example, a mix of introverts and extroverts, students 
with STEM, humanities, and business backgrounds, and so on. 

Despite its limitations, we will stick with our stylized exam-
ple because it allows us to vividly illustrate our argument and to 
describe some of the points in a more tangible way. We do not 
mean to suggest that there is something particularly important 
about automating higher education or admission decisions in 
particular. That said, in the latter parts of this paper, we return 
to the context question—does the kind of explanation that an ap-
proach offers matter more for some contexts than others—i.e., 
cancer diagnosis versus sentencing decisions for a criminal of-
fender? 

Now, the first question is: what exactly is the school inter-
ested in predicting? We called it “admissibility,” but what con-
tributes to admissibility? For the sake of our hypothetical, we 
will assume that MIT Law is willing to be a little bit simplistic 
and decide whom to admit on the basis of their predicted law 
school performance alone. And we will assume that, being ex-
tremely quantitative in its approach, MIT Law has decided to 
look only at applicants’ undergraduate GPAs, denoted as x1, and 
LSAT scores, denoted as x2. While simplistic, this is not all that 
far off from what U.S. News & World Report actually has done 
as a major part of its own rankings of schools,51 nor is it too far 
 
 50. To be sure, as recent litigation on college admission criteria before the 
U.S. Supreme Court illustrates, what colleges are and should be measuring is a 
highly contentious question—but one that we emphasize is not particularly rel-
evant to our paper. See generally Students for Fair Admissions, Inc. v. President 
& Fellows of Harv. Coll., 600 U.S. 181 (2023). We merely are offering this as an 
easy to grasp example, nothing more. 
 51. Robert Morse et al., Methodology: 2023-2024 Best Law Schools Rank-
ings, U.S. NEWS & WORLD REP. (May 10, 2023), https://www.usnews.com/ 
education/best-graduate-schools/articles/law-schools-methodology [https:// 
perma.cc/TD4K-S7XR] (listed undergraduate GPA and LSAT score as two of the 
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off from how schools evaluate some parts of an application file. 
We will assume that MIT Law has obtained data on students’ 
past law school performance (perhaps from a peer school) so that 
for each student in the training set (i.e., the labeled set of struc-
tured data to which the model is then fitted before being put to 
use), they have the student’s undergraduate GPAs, (x1), and 
LSAT scores, (x2), as well as their law school GPAs, (y). They now 
wish to estimate a function, (y = f(x1, x2)). For example, if we use 
a linear model, as described above, we would assume f can be 
reduced to a function of the form f(x; 𝛽) =  𝛽0 + 𝛽1x1 + 𝛽2x2, and 
we would use the data to identify point estimates of 𝛽0, 𝛽1, and 
𝛽2 using the method of least squares. 

We almost have our full model, but a prediction is not a de-
cision. We also need a function that takes the predicted GPA52 
as its input and, like in our simplified toy example (no wait-list!), 
provides a binary (yes/no) answer regarding admission as its out-
put. The easiest way to accomplish this would be to simply set a 
threshold on the acceptable predicted law school GPA. For ex-
ample: admit everyone whose predicted GPA is 3.7 or above. 
Such a threshold essentially divides our data into two classes—
those who are estimated to be admissible and those who are es-
timated to be inadmissible, where admissibility has been quan-
tified in terms of predicted law school GPA. 

2. Interpretability in Practice 
The model we have just described is very easy to interpret. 

If a student is rejected and inquires about the nature of the de-
cision in her case, the school can provide a simple, understanda-
ble, and transparent explanation. The predicted output is simply 
a sum of the inputs weighted by their parameter estimates. The 
model uses a weighted combination of an applicant’s GPA and 
LSAT score and nothing else. We can make the model’s parame-
ters available, which would then enable the applicant or anyone 

 
eight factors used in the overall law school rankings). But cf. Robert Morse & 
Stephanie Salmon, Plans for Publication of the 2023-2024 Best Law Schools, 
U.S. NEWS & WORLD REP. (Jan. 2, 2023), https://www.usnews.com/education/ 
blogs/college-rankings-blog/articles/2023-01-02/plans-for-publication-of-the 
-2023-2024-best-law-schools [https://perma.cc/PW76-D4PZ] (noting feedback 
criticizing the methodology). 
 52. The predicted law school GPA is before any curving. 
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else to determine the feasible combinations of LSAT and GPA 
that he or she likely needs to be admitted the following year. 

This information is not just “nice to have” but crucial in 
terms of the kinds of explanations that applicants want and, we 
would argue, a more general desideratum of explanations in al-
gorithmic decision-making. A transparent model is suitably ac-
tion guiding—it is actually useful in shaping students’ subse-
quent behavior and helping them plan for the future. If a student 
has his or her heart set on MIT Law and wants to re-apply, 
should the student study for the LSAT more? Should he or she 
instead take some additional undergraduate courses in order to 
improve his or her GPA? These questions can be meaningfully 
answered if the students are given the transparent model that 
was used to evaluate their applications.53 

Now suppose that the data MIT Law has obtained looks as 
follows: 

 

Figure 1. Hypothetical law school data. 
 
Figure 1 depicts a synthetic data set that we have created 

for 150 students. As described, we have again made up infor-
mation about students’ LSAT scores and undergraduate GPAs 

 
 53. While it is true that the pool for the following year will always look 
different, this transparent model can precisely at least answer the question 
“what would I have had to do differently to have been admitted this year?” and 
that is very helpful in guiding their actions for the next application cycle. 
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for the purpose of this illustration. We assume there are two 
types of students: admissible and inadmissible. This is just a 
generalization of our 3.7 threshold from above. 

We generated this hypothetical dataset by assuming that 
admissible students have on average a 168 LSAT and a 3.7 col-
lege GPA, whereas inadmissible students have on average a 162 
LSAT and a 3.3 college GPA, where both groups are normally 
distributed. What this means is that admissible students do bet-
ter, on average, in the observed features, but there are still ad-
missible students who just so happen to obtain a low undergrad-
uate GPA or low LSAT score (e.g., a student may get sick on the 
day of the test, or do poorly in an undergraduate semester due 
to unexpected health problems) and inadmissible students who 
happen to obtain a high undergraduate GPA and LSAT score 
(e.g., due to luck or due to taking particularly easy courses whose 
grade is not reflective of their aptitude). 

MIT Law’s task now is to identify a model that best distin-
guishes the two groups. We can make estimates using different 
models. The panels below show two attempts: above, we have a 
linear model (the kind that we described above), and below, we 
have a single layer, feed-forward, neural network. Both have 
been fit to the hypothetical law school data. 
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Figure 2. A linear model (top) and neural network (bottom) 

fit to law school data. 
 
The black line in each panel is the fitted model—this is the 

classification boundary. When a new student applies to law 
school, we would take their LSAT and college GPA and plot them 
on this grid. If they are below the line, they would be rejected. If 
they are on or above the line, they would be accepted. Notice that 
the simple model (top) does just a little bit worse than the neural 
network (bottom). By worse, we mean that the model “incor-
rectly” admits eight inadmissible students in the test data, and 
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“incorrectly” rejects one admissible student (9/150 mistakes). 
The neural network contours better around the groups, so that 
it “incorrectly” accepts only four students and “incorrectly” re-
jects two (6/150 mistakes). 

The linear model on the top can be described as before, using 
an expression of the form y = 𝛽0 + 𝛽1x1 + 𝛽2x2. The prediction is a 
simple linear function of one’s LSAT and undergraduate GPA. 
But the neural network model cannot be described this way. In-
stead, the (very simple) neural network model we have used 
takes a student’s LSAT and GPA, connects them to more than a 
dozen nodes in a hidden layer, and then connects those nodes to 
the outcome. The result of this process is that it would be hard 
to describe “how much” of a role one’s LSAT plays, and how much 
of a role one’s GPA plays. It would also be hard to know how the 
relative importance of those variables changes as we update the 
model. It would not be possible for a rejected applicant to grasp 
the feasible combinations of LSAT and GPA that would lead 
them to be admitted the following year. If she retakes the LSAT, 
how much better does she need to do? It is hard to say. The only 
way for her to really answer this question under various hypo-
thetical scenarios is to run this model on her own computer (if 
she was given access), feed it various possible combinations of 
LSAT and GPA, and evaluate the outcome.54 

In the hypothetical case we are considering, one thing we 
can do with both the linear model and the neural network model 
is to show to all applicants the classification boundaries in Fig-
ure 2. That can be helpful to guide action, but note that those 
boundaries change as the model is updated with new data (i.e., 
more applicants), so what we would really like to understand is 
how the variables are combined to formulate each prediction. 
Moreover, visualizing the classification boundary is only possible 
in toy cases where the number of variables is three or less (in our 
case we have two). In real life, a good model might have tens or 
hundreds or thousands of variables depending on the question. 
In general, for an n-dimensional classification problem, the 

 
 54. Coincidentally, this is indeed how some authors have tried to articulate 
what explainability means—namely, to allow users to interact and run the 
model even if they do not understand its internal workings. Cf. Lipton, supra 
note 27, at 15 (describing methods of post hoc interpretability). We are not in 
principle opposed to this practice; it can provide limited benefits. But our argu-
ment is more narrowly directed at leading explainability algorithms. 
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classification boundary is an n-1 dimensional hyperplane. In our 
example, it is a line segment. With three variables, it would be a 
two-dimensional slice through a three-dimensional plot. Beyond 
that, we can no longer rely on visualization in the same way. 

Thus far, we have contrasted a simple linear model, which 
is interpretable, with a neural net (NN) model, which is not. We 
have not yet said anything about explainable AI/ML in this ex-
ample. As we described above, leading explainable AI/ML, such 
as LIME55 and SHAP,56 generate a supposedly transparent 
white-box model that tries to explain a non-interpretable black-
box AI/ML model.57 That sounds good, but what does that actu-
ally mean in practice? Let us explain by imagining how MIT Law 
might do exactly that. 

3. Explainability in Practice 
Suppose that after constructing the NN model in the right 

panel of Figure 2, we then engineer a linear model that locally 
approximates the NN model as closely as possible, as in Figure 
3 below. 
  

 
 55. Ribeiro et al., supra note 13. 
 56. Lundberg & Lee, supra note 13 (a method that generates feature im-
portances using Shapely regression values of a conditional expectation function 
of the original model. For further discussion of SHAP, see infra Part III.A. 
 57. See supra notes 26–27 and accompanying text. 
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Figure 3. Linear approximation (red line segment) of NN 
model (black curve) fit to law school data. 

 
The model depicted by the red line is of the simple linear 

form. We can therefore use that model (the red line segment) in 
order to explain the uninterpretable one (black curve) for a par-
ticular student whose LSAT and GPA land them in the neigh-
borhood where the red line segment is approximately tangent to 
the black curve. If a student asks why she was rejected from MIT 
Law, and the school wanted to answer truthfully (if somewhat 
technical in its form, although it is MIT after all!), it could tell 
her: a linear approximation of our black-box model suggests that 
this is roughly the formula it applied to your application file. It 
is not the actual formula used, but it is our best simplifying 
guess. 

The student can then (supposedly, according to explainable 
AI/ML proponents) use that formula in order to guide her subse-
quent behavior—for example, to estimate how much better she 
needs to do on the LSAT the next time around to get admitted to 
MIT Law. This is what explainable AI/ML algorithms attempt to 
do—to give an explanation for a non-interpretable AI/ML model. 
In this case, we have offered an illustration of the influential 
LIME explainability algorithm. It is this kind of explainability 
algorithm that is the subject of our arguments—algorithms, like 
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LIME, which produce post hoc rationales of black-box model pre-
dictions.58 

In the next Part, we explain what it is about the post hoc 
nature of those rationales that make them unable to do what 
people want explanations to do. In particular, in the next Part, 
we demonstrate why explainable AI/ML models often fail to ef-
fectively guide action. Then, in Sections III.A–C, we show that 
they often fail to provide sincere explanations/motivating rea-
sons for the underlying automated decisions. In Section III.D, we 
consider the question of whether they can underwrite normative 
attitudes like blame and praise. 

II.  WHY EXPLAINABLE AI/ML CANNOT ACHIEVE ITS 
GOAL OF ACTION GUIDANCE   

As we have discussed in Part I, an interpretable AI/ML 
model is a model that can be understood immediately. Explain-
able AI/ML, by contrast, is one for which we can construct a sec-
ondary approximating model which can itself be understood. 
While there are many different approaches to explanation, the 
linear approximation is a paradigmatic example, and they all 
share a family resemblance (to use the philosopher’s terminology 
that follows from Wittgenstein) in the sense that they try to 
glean insights about what is happening inside the black box 
without opening it up. Meanwhile, with an interpretable AI/ML 
model, we simply avoid using the black box in the first place. 

A. EFFECTIVE ACTION GUIDANCE 
If a student has been rejected from law school in our exam-

ple, and she seeks an explanation, this could be either because 
she would like to request a review of the decision or, more likely, 
because she would like to know what she needs to change in or-
der to have a better chance at being admitted next year. Simi-
larly, if a loan applicant is denied a loan, he wants to know what 
he needs to change in order to have a better shot at being given 
a loan by the next institution or the next time around.59 If a 
 
 58. We understand that “explainable AI” is often used much more broadly 
to refer to any kind of system that sheds some light on an algorithmic prediction. 
But in this Article, we limit our attention to LIME and its counterparts, which 
are indeed the leading explainability algorithms. 
 59. Cf. Magnuson, supra note 1, at 349–50 (describing opaque loan ap-
proval algorithms). 
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defendant is denied parole, she wants to know how to change her 
behavior in prison in order to have a better shot at the next hear-
ing.60 If an applicant is not hired, he wants to know which skill 
sets to cultivate in order to have a better chance next recruit-
ment season, and so forth.61 The point is that explanations are 
valuable in no small part because they can be action guiding. A 
causal explanation, for instance, is valuable because it provides 
understanding about which input must change in order to 
change the output. 

Consider a non-algorithmic analogy to show you how this is 
related to explainability. Suppose you are waiting for a friend, 
Dave, to meet you at a movie theater. After waiting for thirty 
minutes, you call Dave’s partner, Sidney, to ask if they know 
where Dave is because you want some guidance between 
whether to (a) buy tickets and snacks for you and Dave because 
Dave will be along in a minute, (b) get tickets for a later show 
because Dave is going to miss this one, or (c) see the show you 
originally intended alone since Dave is not coming at all today. 
Sidney says, “Hmm. Dave could be delayed due to a work emer-
gency.” You thank Sidney for the information, but in truth, this 
explanation is not very helpful to you. If there were a reason to 
believe Dave had a work emergency, that would be useful to you 
in deciding among your options; but simply suggesting that there 
could be a work emergency because a work emergency is con-
sistent with “the data” (i.e., Dave being late) is of little use. If 
Dave had a work emergency, you might pursue option (b); if 
someone in Dave’s family got sick and needs his help, you may 
pursue option (c); and if Dave is just stuck in traffic, you might 
pursue option (a). The explanation Sidney has given you does not 
tell you which of these it is; all could be the explanation, and for 
that reason her advice is not action guiding. 

Now let us return to algorithmic models and their explana-
tion. For similar reasons, explainable AI/ML is not nearly as use-
ful in its action guidance, nor is it as valuable in its transparency 
as an interpretable model can be. For example, if the student 
who was rejected by MIT Law attempts to use the explainable 
AI/ML model in our hypothetical to guide her subsequent 
 
 60. Cf. Coglianese & Ben Dor, supra note 1, at 802–04 (describing parole 
algorithms). 
 61. Cf. Ajunwa, supra note 1, at 623 (describing algorithmic recruitment 
tools). 
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behavior, the relevance of the approximation depends on where 
the student falls. Applicants near the mean of both groups 
(around a 165 LSAT and a 3.6 GPA) are classified very similarly 
by both the interpretable and explainable AI/ML models illus-
trated above. Indeed, in the neighborhood of the mean values, 
the only way to be classified differently by the original model and 
its explaining model (i.e., to be admitted by the original and re-
jected by the explanatory, or vice versa) would be to fall exactly 
in the vanishingly small space between the black curve and red 
line segment in Figure 3. 

Meanwhile, applicants at the two extremes can be classified 
differently (i.e., receive a different result) by the different models 
very easily. For example, for students with an LSAT score of 175, 
everyone with a GPA between approximately 3.0 and 3.4 will be 
treated differently by the actual model and its linear approxima-
tion. To understand why, we direct the reader to Figure 3, above. 
Notice that around LSAT scores of 165, the linear approximation 
(red line segment) is approximately secant to the original neural 
network (black curve)—i.e., in that small region, it is a very good 
approximation, and there is almost no space between them 
where a point could fall. But, around LSAT scores of 175, the 
space between the red line segment and the black curve is very 
large. Every applicant who falls into the space between them 
would be classified differently by the original model and its ap-
proximation. So, for these students, the linear approximation is 
neither revealing of what is happening inside the black box, nor 
very useful in guiding their future behavior. Indeed, if they at-
tempt to use it for action guidance, it will severely mislead them. 
A student with a 175 LSAT score would assume she only needs 
approximately 3.0 GPA for admission, when, in reality, she 
needs at least 3.4. 

More generally, the point is that when our rejected law 
school applicant learns that she will be evaluated using a point 
system that is based additively on her LSAT score and her 
GPA—as she would if the admissions system were based on a 
simple interpretable AI/ML model—she can plan for the future. 
She can, for example, consider how much time she has to study 
for the LSAT, take a prep course, etc., if it seems feasible that 
this will lead to her admission. If her LSAT score was already 
near perfect, she could discern that a marginal improvement 
would not change the result. If her GPA were already high, she 
may want instead to spend more time improving her LSAT score. 
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And so forth. She knows which dials she needs to turn, and by 
how much. This is exactly what she wants, as does our loan or 
parole applicant in those examples. 

But the explanations generated by explainability algorithms 
fail to provide this kind of action guidance precisely because they 
do not reveal the actual mechanism by which the original deci-
sion is made. They tell the student, in effect: it could be that you 
were rejected because your LSAT score was too low, as this 
would be consistent with the data. But despite this explanation, 
it could also be that the student was rejected because her GPA 
was too low, or because their combination was too low, etc. Our 
rejected student would not learn anything about the admissions 
procedure from a post hoc explanation that is consistent with the 
data. The post hoc explanation is simply an explanation that is 
permitted given the data, because it is not inconsistent with it. 

Proponents of explainable AI/ML may point out that such 
explanations are local, meaning that for every given applicant 
we generate a unique explanation (i.e., a unique red line segment 
consistent with their feature values). But this reinforces our 
point about the post hoc nature of the explanation and its inabil-
ity to guide future action. If a unique explanation is generated 
for every applicant, then we can no longer even pretend to be 
shedding light on the actual classification boundary that was ap-
plied. We elaborate on this point below. 

III.  WHY EXPLAINABLE AI/ML IS INSINCERE (AND WHY 
IT MATTERS)   

Explainability models like LIME ordinarily generate a 
unique explanation for every instance. That is: we take an in-
stance (a law school applicant, in our example), and given the 
decision that they did receive (admit/reject), we generate a plau-
sible linear model that could have produced that decision. In 
other words, algorithms like LIME generate a different explan-
atory model for every instance. Given this, one might take issue 
with our discussion above—where we treat the approximating 
model (the red line segment in Figure 3) as fixed and consider 
how different students would fare had that model been applied 
to their case. In reality, as we noted above, every student would 
be shown a slightly different red line segment that is consistent 
with their case because the loss function that we are minimizing 
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includes a term that pertains to proximity from a particular in-
stance (as we explained in Section I.B.1). 

However, far from being a saving grace for AI/ML explaina-
bility models like LIME, this poses an additional problem for 
them. Instead of producing a stable and robust explanation, it 
becomes clear that the explanation they produce is a post hoc 
rationalization as soon as one realizes that it can differ from in-
stance to instance (or from applicant to applicant, in our exam-
ple). Otherwise put, explainable AI/ML is explicitly and inher-
ently insincere about the grounds for a decision.62 In fact, even 
for a single applicant, we can generate more than one explana-
tion. 

A. ILLUSTRATING EXPLAINABLE AI/ML’S INSINCERITY 
An easy way to illustrate explainable AI/ML’s insincerity is 

to consider further how the model might generate different ex-
planations for different people. Before we return to MIT Law, let 
us illustrate why this is a problem with an even simpler exam-
ple. Imagine you are a man going on a date with someone. The 
dater ends the date by telling you, “You are amazing. You are 
exactly the kind of person I want to date, except I won’t date men 
under six feet. I am so sorry. I am sure you will find someone 
great.” Your feelings are hurt, but at least you believe it really 
was your height, which is not something you can control. A 
month later, you discover the dater is seriously dating someone 
who is 5′8″. You might have many thoughts about the dater and 
the person’s dating behavior, but one immediate feeling you 
might have is that the dater has been insincere. The explanation 
given was not the explanation (even though in your case it was 
consistent with “the data” at that point in time)—because if it 
had been the explanation, the dater would not be with the other 
chap either. 

Now let us return to MIT Law and see how the same is true 
there. The explainable AI/ML model generates inherently 

 
 62. A word about terminology here. We describe the algorithm as “insin-
cere” because that seems idiomatically appropriate, but we do not mean to as-
cribe any personhood or otherwise anthropomorphize it. Perhaps it would be 
better put that it gives insincere explanations or to say its explanations are in-
sincere by design. This latter formulation is in some way the most accurate be-
cause it does not connote that the algorithm is somehow choosing to be insincere 
rather than sincere. 
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insincere explanations, as evidenced by the fact that it would 
generate different explanations for different applicants since not 
all applicants are classified the same way by the two models (the 
black-box and its approximating white-box). Accordingly, by hy-
pothesis, there exists some pair of applicants that would receive 
different explanations. Indeed, this will be true for many pairs 
of applicants. Consider, for example, the student in our model 
who is rejected with a 170 LSAT score (bottom right oval in Fig-
ure 4). The approximating model we have been using to illus-
trate our argument so far would admit her, so if we want to ex-
plain why she was rejected, we need a second approximation, as 
in Figure 4, below. 

 

Figure 4. Competing linear approximations of neural net model 
fit to law school data. 

 
The purple line segment offers a second, competing linear 

approximation of the neural net model (the black curve). For the 
student corresponding to the point inside the bottom right 
rounded oval, this model would count as a more effective expla-
nation since it is now consistent with the NN model (unlike the 
red line segment, which is inconsistent with the original model 
for this student, because it would admit the student whereas the 
NN model would reject the student). 

This reinforces what we have been calling the post hoc na-
ture of algorithmically generated explanations. We look at where 
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the student falls in the original model, and we identify an “ex-
planation” that reinforces the original decision. For the same 
reason, multiple competing explanations can be mutually incon-
sistent across a group of instances (applicants). If we use the 
purple line segment as our explanation, then the students inside 
the oval on the top left should be admitted. But if we use the red 
line segment as our explanation, then the student on the bottom 
right should be admitted. But under neither line segment are 
they admitted or rejected together—that is, neither explanation 
can predict what the model tells us to do for both students sim-
ultaneously. And if these students can communicate with each 
other, then they will know we are being insincere to at least one 
of them—that is, the explanation we gave one of them does not 
apply “the rule” because it does not explain the result that oc-
curred to the other. Thus, far from promoting trust and trans-
parency, our hypothetical MIT Law will be almost sure to under-
mine its applicants’ trust by using an explainability algorithm in 
its admissions process. 

In the examples we have been using, there has been a fea-
ture that has exposed the insincerity. In our dating hypothetical, 
our rejected man only learned about the insincerity of the dater’s 
explanation because he observed the dater’s subsequent rela-
tionship. Likewise, our applicant to MIT Law only knows about 
the insincerity of the school’s algorithm by comparing notes with 
the other applicants and their own queries and responses. In 
many instances, those who are adversely affected by an algo-
rithm will not have as ready an opportunity to “share and com-
pare” and thus detect the insincerity. 

But that is not a mark in favor of the explainable AI/ML al-
gorithm. Indeed, if one were to adopt an explainable AI/ML al-
gorithm precisely because it makes the detection of insincerity 
more difficult, that would be a mark against it for a system de-
signer whose argument for adopting the algorithm is to be trans-
parent and promote trust. It would be particularly noxious to 
tout the benefit of one’s algorithm as giving transparent expla-
nations when those explanations are insincere and contradic-
tory, but those features are hard to detect. Insincere explana-
tions are, in many instances, not the kinds of explanations worth 
wanting. 

So far, we have focused on the LIME algorithm for illustra-
tion because of its ubiquity and simplicity, but the problem is not 
limited to the LIME algorithm. Consider another leading 
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algorithm developed by Lundberg and Lee called SHAP (Shapley 
Additive Explanation).63 The idea is based on a solution concept 
from cooperative game theory known as a Shapley value.64 Like 
LIME, this algorithm identifies a model which estimates the fea-
ture importance of a black-box model.65 In the context of expla-
nation, the Shapley value provides the average contribution of a 
feature.66 In this sense, both LIME and SHAP are what 
Lundberg and Lee call “additive feature attribution methods.”67 
In our simple law school admissions example, they are linear ap-
proximations without interaction (they enable us to identify the 
appropriate red line so to speak, as in Figure 3). They construct 
a model that allows us to make statements such as those we 
would make in the MIT Law example; by simply adding up the 
feature contributions, we approximate the model’s prediction. 
Like LIME, SHAP is a post hoc exercise that can only be guar-
anteed to be locally faithful.68 It cannot be guaranteed to be an 
accurate approximation everywhere because, again, that would 
mean it is equivalent to the original model, and, in that case, we 
would no longer need the original model. 

B. WHY INSINCERE EXPLANATIONS ARE A PROBLEM 
We have argued that instead of providing the actual reasons 

for a decision, Explainable AI offers post hoc rationalizations.69 
Some of what is distasteful about such explanations came out in 
the dating example and the more general MIT Law hypothetical, 
but it is worth spending some time to more formally ask whether 
and why post hoc rationalizations are actually bad. Otherwise 
put, what makes the insincerity of post hoc rationalizations a 
problem? 

Consider the kinds of algorithms, such as Correctional Of-
fender Management Profiling for Alternative Sanctions 

 
 63. Lundberg & Lee, supra note 13, at 4–8. 
 64. See L. S. Shapley, Notes on the n-Person Game—II: The Value of an n-
Person Game 1–2 (Rand Corp., Working Paper No. RM-670-PR, 1951) (archived 
at https://perma.cc/2QQW-4GUB) (introducing the Shapley value). 
 65. Lundberg & Lee, supra note 13, at 2. 
 66. Id. at 3. 
 67. Id. at 2. 
 68. See id. at 4 (describing the local accuracy property of the models). 
 69. See supra Part III.A (discussing insincere explanations). 
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(COMPAS),70 that we have seen used in the criminal justice sys-
tem in ways that have been heavily criticized.71 Once again, we 
will just describe it in an intentionally oversimplified way to il-
lustrate the point. Start with an analogy—again a simplified toy 
example meant to illustrate a point rather than capture the real 
world. Suppose that a certain defendant is denied parole one 
morning by a presiding judge or probation officer. This defend-
ant wants to know why they were denied parole and asks the 
judge’s clerk. After the judge has made her decisions for that ses-
sion, the clerk takes a look at that morning’s data and searches 
for a pattern. Conveniently, it turns out, everyone granted parole 
that morning had taken the General Education Development 
test (GED) and obtained their high school equivalency diploma 
during their term in prison. The defendant in question did not 
obtain a GED. Hence, the clerk tells the defendant, “the reason 
for your denial of parole is that unlike all those granted parole 
this morning, you did not obtain a GED.” 

In what way was the clerk’s explanation insincere? It was 
insincere because of its post hoc and contingent nature. The clerk 
picked out this explanation because the clerk recognized that the 
defendant did not receive a GED, and, coincidentally, everyone 
granted parole did receive a GED. The clerk did not pick out this 
explanation due to a sincere belief that the judge’s conclusion is 
causally determined by the receipt of the GED. This explanation, 
therefore, is neither unique nor necessarily the actual reason for 
the judge’s decision. It is simply one of many patterns that the 
clerk was able to identify after the fact in order to justify or ra-
tionalize the judge’s decision. It could also have been the case, 
for example, that everyone who received parole had volunteered 
 
 70. Jon Kleinberg et al., Inherent Trade-Offs in the Fair Determination of 
Risk Scores (arXiv, Working Paper No. 1609.05807, 2016) (archived at https:// 
perma.cc/5RJ3-JZMH) (examining use of COMPAS and a report on its use by 
Julia Angwin et al.) (citing Julia Angwin et al., Machine Bias, PROPUBLICA 
(May 23, 2016), https://www.propublica.org/article/machine-bias-risk 
-assessments-in-criminal-sentencing [https://perma.cc/XV8C-AG9T]). 
 71. See Kay Firth-Butterfield, Artificial Intelligence and the Law: More 
Questions than Answers?, 14 SCITECH L. 28, 29 (2017) (highlighting courts’ con-
cerns with COMPAS); Sophie Noiret et al., Bias and Fairness in Computer Vi-
sion Applications of the Criminal Justice System, 2021 IEEE SYMP. SERIES COM-
PUTATIONAL INTEL. 1 (discussing reporting that uncovered racial bias in AI-
driven technology used in the justice system); Gijs van Dijck, Predicting Recid-
ivism Risk Meets AI Act, 28 EUR. J. ON CRIM. POL’Y & RSCH. 407, 409 (2022) 
(discussing many algorithms in the criminal justice system). 
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for the city clean-up initiative, had a stellar behavior record, or 
had some other admirable feature that earned them parole. 

The crux of the point is that explainable AI/ML behaves 
much like the clerk in our analogy. And insofar as one finds the 
clerk’s insincerity to be objectionable, then explainable AI/ML’s 
insincerity, as exemplified by algorithms like LIME and SHAP, 
is objectionable in a similar way. 

While that sounds intuitive, we should be careful to examine 
in a little bit more detail what is meant by insincerity to under-
stand why it is bad. First, there is a sense in which such insin-
cerity is self-evidently a bad practice and a sense in which it 
makes explainable AI self-undermining. We know, by hypothe-
sis, that the reason given is most likely not in fact the actual 
reason for this defendant’s denial of parole. If we expand our ob-
servations and look at decisions made on other days, we would 
learn that many people who did not receive a GED but who had 
otherwise stellar behavior records, for example, did receive pa-
role.72 Hence, the rationale is false. 

The explanation is thereby a kind of fool’s gold, so to speak, 
or a kind of moral sedative. It is provided merely to placate the 
defendant by providing a plausible rationale of why the judge 
might have decided the way she did, even though we know that 
is not, in fact, the reason for the judge’s decision. If a public in-
terest litigation group wanted to challenge the judge’s decision-
making, it might wrongfully spend time trying to put pressure 
on the judge’s reliance on the GED, when in fact that is not the 
explanation for the result. If criminal defendants—perhaps more 
likely, a group of criminal defense lawyers or members of the 
public defender’s office—started talking amongst each other, 
then their faith in the explanations given would also crumble 
when they realized that the explanations are just insincere post 
hoc rationalizations. More generally, once users of algorithms 
become aware that they are receiving explanations which are 
false in this sense, that will undermine the system’s credibility 
as well as the user’s trust in the system (which is antithetical to 
what explanations attempt to accomplish in the first place). 
  

 
 72. Of course, it would be different if there really were such a strong causal 
relationship between obtaining a GED and receiving parole. In our hypothetical 
example, that is not what we intend. 
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What would be a better form of explanation in this case? It 
would be normatively more desirable to say that while we do not 
know why the judge decided the way she did in this particular 
case, her decision is defensible on multiple grounds, and among 
them is that receiving a GED might have improved the defend-
ant’s overall score. This would at least be an honest assessment. 
This is valuable because we often run the risk of uncovering pat-
terns with post hoc explanations that we know ex ante not to be 
causally relevant. For example, suppose the clerk instead recog-
nized that everyone granted parole on the relevant morning was 
wearing a blue t-shirt. In this situation, it would be more harm-
ful to the system’s legitimacy to produce this as the explanation 
than to simply produce nothing. Why? We have good reason to 
believe that wearing a blue t-shirt would not, and should not, 
improve the defendant’s score (indeed, that is not something the 
judge should be looking to at all). But when algorithms generate 
explanations, they cannot distinguish between the GED story 
and the blue t-shirt story. From the algorithm’s perspective, both 
can be equally accurate approximations of the underlying black-
box decision model. The explaining algorithm does not have a 
causal picture of what is happening in the original black-box 
model. The reason we know that the latter is patently false, in 
the case of the human judge in our analogy, is because we are 
using our prior information about how the judge might be rea-
soning, and we know that t-shirt color should be legally irrele-
vant; hence, any such association most probably occurred by 
chance. It is far less clear ex ante that obtaining a GED will be 
causally irrelevant, and so if offered this explanation, one might 
mistakenly take it as the explanation and thus action guiding. 

What this discussion illustrates is that while post hoc expla-
nations are ordinarily arbitrary in the sense of not producing the 
actual (causally relevant) reason for a decision, some such expla-
nations can be legitimate or legally justifiable (the GED expla-
nation), while others are not legitimate (the t-shirt-color expla-
nation). In the latter camp, we could also include explanations 
based on gender, ethnicity, or race, for example. When the expla-
nation is not justifiable, that is an immediate problem because, 
for normative/policy reasons, we do not want judges to rely on 
features such as, say, race or ethnicity. When the explanation is 
justifiable, that is better, but there can still be a problem—which 
is the action guiding dimension that we have discussed. Even the 
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GED explanation is a bad explanation73 because we do not know 
how, if at all, that obtaining a GED may affect this defendant’s 
chances of being granted parole later on. If we knew that, as a 
general matter, obtaining a GED boosts one’s behavior score, 
then that explanation would be effective. But we do not know 
this. 

We hope we have explained why the failure of explainable 
AI/ML to effectively guide action and its tendency to generate 
insincere explanations are problems. But to make matters 
worse, they are problems that run counter to the very benefits of 
explainable AI/ML that its proponents champion. For example, 
Ribeiro and his co-authors write, “[d]espite widespread adoption, 
machine learning models remain mostly black boxes. Under-
standing the reasons behind predictions is, however, quite im-
portant in assessing trust, which is fundamental if one plans to 
take action based on a prediction, or when choosing whether to 
deploy a new model.”74 Similarly, Lundberg and Lee start their 
paper by observing, “[t]he ability to correctly interpret a predic-
tion model’s output is extremely important. It engenders appro-
priate user trust, provides insight into how a model may be im-
proved, and supports understanding of the process being 
modeled.”75 

From a behavioral perspective, it is hard to see how an in-
sincere explanation of this sort could provide the immediate ben-
efits these authors tout once its users recognize the insincerity. 
Would this increase trust in the parole process? Maybe in a one-
shot round, so to speak, but certainly not in the long run. Does it 
increase the transparency of the judge’s reasoning? Not at all. In 
fact, it often obscures it. Does it promote democratic accounta-
bility and the rule of law? Doubtfully—on the contrary, picking 
out an insincere rationalization and pretending it to be the rea-
son for a decision seems to undermine the standing and legiti-
macy of the judicial office. But this is exactly what explainable 
AI/ML does. We apply a black-box model to generate a predic-
tion. We do not know the actual reasons for that prediction. We 
then approximate the model using a white box, and we give the 
 
 73. In this context, we mean “bad” in the sense of causally explaining the 
judge’s behavior. The explanation could also be “bad” in the sense of not being 
justifiable, such as the t-shirt-color example. 
 74. Ribeiro et al., supra note 13, at 1135. 
 75. Lundberg & Lee, supra note 13, at 1. 
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reasons associated with the white-box prediction, pretending 
them to be the actual reasons. 

C. AN OBJECTION: SINCERITY VERSUS JUSTIFICATION 
We have given a fairly intuitive argument for why insincere 

explanations are a problem. But it is worthwhile to pause to con-
sider whether that argument, though intuitive, might be wrong. 
Some scholars have recently suggested that what matters more 
for procedural integrity is not so much sincerity, but rather jus-
tification.76 When we ask whether an algorithmic decision can be 
justified, we want reasons, as Gillian Hadfield argues, that “fol-
low the rules of our community.”77 But those reasons, she argues, 
need not be unique, nor do they need to be the actual reasons for 
a decision.78 

Consider a lending example, which Hadfield raises79: an ap-
plicant is denied a loan by a bank and seeks to know why she 
was denied the loan. The bank has a black-box algorithm which 
deemed the applicant too risky to lend to. While the bank may 
not know the actual feature values that led to the denial, Had-
field argues that it can give any legitimate explanation con-
sistent with the data. For example, it can say that the credit 
score was not high enough, the annual income was not high 
enough, the work experience too insubstantial, or so on. These 
would all presumably be true in such a case. And any of these is 
a legitimate justification. By comparison, an illegitimate justifi-
cation would be that the applicant belongs to X minority race, 
and the bank decided not to lend to applicants of this race. So, 
Hadfield argues that legitimate reasons—those that will make 
the decision justifiable—need not be the actual reasons. And on 
Hadfield’s view, while procedural justice requires legitimacy 
(and in turn justifiability), it does not require sincerity. The bank 
simply has to produce some legitimate reasons, not necessarily 

 
 76. See Gillian K. Hadfield, Explanation and Justification: AI Decision-
Making, Law, and the Rights of Citizens, UNIV. OF TORONTO SCHWARTZ REIS-
MAN INST. FOR TECH. & SOC’Y (May 18, 2021), https://srinstitute.utoronto.ca/ 
news/hadfield-justifiable-ai [https://perma.cc/4HYH-PU8S] (claiming that most 
are not interested in the working of a ML model but rather in the justification). 
 77. Id. 
 78. Id. 
 79. Id. 
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the ones that causally brought about the decision-maker’s judg-
ment. 

This position echoes some writing in legal scholarship out-
side the context of algorithmic decision-making; Mathilde Co-
hen, for example, argues that lack of sincere reason-giving is, in 
many legal contexts, not an impediment to the legal validity of a 
decision.80 To make this argument, she first distinguishes be-
tween motivating and normative reasons, following the re-
nowned philosophers, Bernard Williams and Thomas Nagel.81 
Motivating reasons are said to explain a person’s actions—they 
are the reason in virtue of which the action was taken.82 Norma-
tive reasons, on the other hand, are said to justify a person’s ac-
tion rather than explain it.83 For instance, in the lending exam-
ple, the fact that a denied applicant’s credit score is insufficiently 
high can be a normative reason without being a motivating rea-
son. By normative reason, Cohen (following Williams and Nagel, 
among others) means that it is a reason that, in the context of 
our legal institutions, could constitute a legitimate ground for 
the decision.84 But it may not be the actual ground for this par-
ticular judge’s decision.85 Meanwhile, the fact that the applicant 
belongs to a minority race could be a motivating reason without 
being a normative reason. That is, it could be the actual ground 
for this particular judge’s decision even though the judge should 
not be deciding on that ground. 

Having made this distinction, Cohen then argues that there 
are two ways we can understand sincerity: (1) as a requirement 
that our stated motivating reasons correspond to the reasons 
that in fact motivated us (internalist reading), or (2) as a require-
ment that our stated normative reasons correspond to reasons 
which are in fact legitimate justificatory reasons (externalist 

 
 80. Cohen, supra note 24, at 1092. 
 81. See id. at 1097 n.23 (discussing the influence of Bernard Williams, In-
ternal and External Reasons, in MORAL LUCK: PHILOSOPHICAL PAPERS 1973–
1980, at 101 (1981)). See generally B.A.O. Williams & T. Nagel, Moral Luck, 50 
PROC. ARISTOTELIAN SOC’Y, SUPPLEMENTARY VOLUMES 115 (1976) (explaining 
the concept of moral luck). 
 82. Cohen, supra note 24, at 1097 n.23. 
 83. Id. 
 84. See id. at 1132 (“[A] normative reason is adequate to justify [a] decision 
. . . .”). 
 85. See id. at 1097 (discussing the decision-maker’s ability to give justifica-
tory reasons without being moved by those reasons). 
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reading).86 Finally, Cohen argues that while externalist sincerity 
can sometimes be called for, internalist sincerity is rarely a ju-
risprudential requirement.87 Hence, as Hadfield suggests,88 
when a loan seeker’s application is denied, the decision-maker 
need merely to present normative reasons—i.e., reasons that jus-
tify the decision. Those reasons need not be the reasons that ac-
tually motivated the decision-maker. 

While this is an interesting and compelling argument, we 
think employing the argument in this way introduces a kind of 
sleight of hand that is further exacerbated if we try to extend 
Cohen’s argument to the algorithmic context (she does not do 
this) and to argue on its basis that sincerity should not be a re-
quirement for explainable AI/ML. The problem with her argu-
ment is that the ordinary notion of sincerity is inextricably 
bound up with what Cohen would call internalist reasons. The 
social practice of reason-giving in the common law legal tradition 
is thought of as giving not just a reason but a motivating reason. 

Consider our dating example again: after the dater explains 
they do not date anyone under six feet, you spot them with some-
one who is clearly well below that height. Feeling like you have 
been lied to and misled, you ask the dater why they were insin-
cere about their rationale for not dating you. The dater says, “I 
was not insincere. Height is one among many normatively per-
missible reasons to reject a dating prospect. While it was not my 
reason, it is indeed a justifiable reason given our dating norms 
and practices. Hence, I gave you a sincere explanation, albeit on 
an externalist reading of sincerity.” At this point, we suspect you 
would believe that the dater is trying to be a little too clever with 
you. All you want to know is why they did not want to date you. 
It does not help for the dater to report one among many possible 
“permissible” reasons for why people do not like another enough 
to date them, even though this was not the dater’s reason. That 
is simply not what you are interested in, and if that were what 
sincerity required us to give, sincerity would cease to be of any 
real value to us. 

 
 86. Id. at 1097–98. 
 87. See id. at 1137 (“[T]hey need only sincerely believe that their decisions 
are justified by some normative reason that they have in fact identified . . . .”). 
But see id. at 1138 (suggesting a context-sensitive approach). 
 88. Hadfield, supra note 76. 
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The value of sincerity is connected to action guidance.89 In-
ternalist sincerity, and the associated motivating reasons it re-
quires decision-makers to produce, is valuable not just in and of 
itself but in order for explanations to play their action-guiding 
role. Consider a different example. Suppose we have two navy 
aircraft pilots whose task is often to fly in sequence, one behind 
the other (such as in reconnaissance missions). Call the front pi-
lot Maverick and the trailing pilot behind him Goose. It is im-
portant for Maverick and Goose to correspond some of their be-
haviors to each other. In particular, it is important for Goose to 
understand when and why Maverick slows down so that Goose 
can react accordingly. Part of reacting accordingly is to predict 
how Maverick will react to various conditions—in some in-
stances, Goose will not have time to wait and see what Maverick 
does, and if he does not start slowing down early enough, the two 
may crash. 

Now, for any given instance in which Maverick slows down, 
it is possible that there are multiple justifiable reasons that he 
could produce for taking that action. For example: Maverick saw 
something noteworthy on the ground, the cloud cover became too 
thick, the distance between Maverick and Goose had become too 
large, and so forth. These are all legitimate reasons to slow 
down. But Goose, flying behind Maverick, needs to know the ac-
tual reason Maverick is slowing down. If Maverick says, “I 
slowed down because the distance between us grew too large,” 
and that is not the motivating reason, then the next time the 
distance grows too large, Goose will slow down, while Maverick 
may not. Even more worrisome is if, in fact, Maverick’s motivat-
ing reason is, “I slowed down because the cloud cover became too 
thick,” but Goose mistakenly thinks this is not Maverick’s moti-
vating reason. Then the next time the cloud cover gets at least 
as thick, Goose will not slow down, while Maverick does, and 
they may crash. It does not matter that both of these explana-
tions are perfectly justifiable. What is needed to guide Goose’s 
behavior is the motivating reason. Otherwise put, the fact that 
Maverick is inconsistent with their reason giving is a problem 
for action guidance—even if all the reasons they might give are 
permissible normative reasons. 

 
 89. See supra Part II. 
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For algorithmically generated decisions to be appropriately 
action guiding, we think the same is true. It is not enough that 
the reasons be justifiable, or normatively permissible. What is 
needed for true action guidance is that the reasons given be the 
motivating, or sincere, reasons. 

Indeed, not only are insincere reasons not helpful, but they 
may be pernicious. To illustrate, consider another toy hypothet-
ical involving sentencing. Imagine that in every sentencing hear-
ing involving a Black defendant, a particular judge offers a pre-
textual (internally insincere but normatively sincere) reason for 
the decision, which covers up the judge’s racism underlying the 
severity of the sentence given. For example, the judge offers as a 
reason, “the higher sentence is warranted because the accused 
has failed to show any remorse over the crime.” Suppose that is 
a normatively justified reason that it is perfectly appropriate as 
a motivating reason for the judge to rely upon.90 But it turns out 
that while it is an appropriate justification, it is one the judge 
never deploys in cases involving the sentencing of white defend-
ants. This would then lead to a divergent set of sentences across 
racial groups that seems problematic even if in every individual 
case involving a Black defendant there was a post hoc rationali-
zation that could be justifiably given. The discrimination may 
not be evident in the one-shot case, but over time the pattern 
reveals itself in the judge’s inconsistency. That is somewhat like 
what happens with our MIT Law example when one explanation 
is given to one MIT Law applicant and another to a different one. 

In short, if we try to extend Cohen’s argument that sincerity 
should not be a legal requirement to the algorithmic context, the 
most we can establish is that a very strange kind of sincerity 
(one that we would not ordinarily consider) should not be a legal 
requirement. But that kind of sincerity is neither intuitively de-
sirable, nor is it compatible with the action-guiding feature of 
explanations of algorithmic decisions. Meanwhile, Cohen’s argu-
ment does not diminish the value of folk sincerity, so to speak—

 
 90. Once again, the example is for illustrative purposes only. We take no 
position on whether this actually is a justified reason for a particular sentence—
we do not seek to offer a worked-out theory of the philosophical underpinning of 
sentencing by American judges. Instead, we just offer this as an example. If it 
is not one you, dear reader, find normatively justified feel free to substitute an-
other. It does not matter for our purposes. 
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i.e., the kind that requires producing motivating reasons. This is 
the kind of sincerity that is crucial for action guidance. 

Now it is true that in the non-algorithmic context, judges 
may not always be able to produce motivating reasons, as many 
in the American Legal Realist tradition have argued.91 We may 
not even have the requisite luminosity (as philosophers call it) 
to discern the “true” reasons motivating our behavior in the first 
place.92 This means that in the ordinary (non-algorithmic) con-
text, requiring internalist sincerity would run afoul of the prin-
ciple (associated first and foremost with Immanuel Kant) that 
“Ought Implies Can”93: we cannot require judges to do something  
  
 
 91. See JEROME FRANK, LAW AND THE MODERN MIND 108–09, 119–21 
(1970) (discussing the factors affecting the judicial decision-making process); 
Felix S. Cohen, Transcendental Nonsense and the Functional Approach, 35 
COLUM. L. REV. 809, 843–49 (1935) (discussing a realist approach to judicial 
decision-making); Oliver W. Holmes, The Path of the Law, 10 HARV. L. REV. 457, 
469 (1897) (“[J]udges themselves have failed adequately to recognize their duty 
of weighing considerations . . . .”). The notion that “law is . . . only a matter of 
what the judges eat for breakfast” has been (with some degree of question) at-
tributed to the Realists. See Dan Priel, Law Is What the Judge Had for Break-
fast: A Brief History of an Unpalatable Idea, 68 BUFF. L. REV. 899, 902 (2020) 
(“[Legal realists Ronald Dworkin [and Alex Kozinski . . . objected to the ‘disas-
trous,’ [sic] ‘catch-phrase . . . that some of the realists themselves encouraged,’ 
that ‘law is . . . only a matter of what the judges eat for breakfast.’” (quoting 
Ronald Dworkin, Dissent on Douglas, N.Y. REV. BOOKS 4 (Feb. 19, 1981) (em-
phasis added), https://www.nybooks.com/articles/1981/02/19/dissent-on-douglas 
[https://perma.cc/3745-HK6A]). Yet at least some analysis seems to suggest this 
might not fully be an exaggeration. Shai Danziger et al., Extraneous Factors in 
Judicial Decisions, 108 PROC. NAT’L ACAD. SCI. 6889, 6892 (2011) (finding that 
extraneous variables, such as food breaks, affect legal decisions). But see, e.g., 
Keren Weinshall-Margel & John Shapard, Overlooked Factors in the Analysis 
of Parole Decisions, 108 PROC. NAT’L ACAD. SCI. E833 (2011) (criticizing such 
findings). In particular, the disjuncture between description and normative jus-
tification may play some role in judicial difficulties in producing motivating rea-
sons. See DAVID HUME, A TREATISE OF HUMAN NATURE 302 (David Fate Norton 
& Mary J. Norton eds., Oxford Univ. Press 2000) (1739–40) (discussing moral 
distinctions not derived from reason); J.L. MACKIE, ETHICS: INVENTING RIGHT 
AND WRONG 81 (Penguin Books 1977) (highlighting the disconnect between nor-
mative content and institutional requirements). 
 92. See TIMOTHY WILLIAMSON, KNOWLEDGE AND ITS LIMITS 107–08 (2000) 
(characterizing luminosity as a tautological guise). 
 93. Compare IMMANUEL KANT, CRITIQUE OF PURE REASON 637 (Norman 
Kemp Smith trans., London, Macmillan & Co. 1929) (1781) (exploring the prop-
osition that if something should be done then it can be done), with SAMUEL 
KAHN, KANT, OUGHT IMPLIES CAN 13–19 (2019) (providing a critical analysis of 
Immanuel Kant’s Critique of Pure Reason). 
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that is in fact impossible for them to do. We often tell ourselves 
rationalizations, convince ourselves of simplistic stories for why 
we act, and engage in other irrational behavior governed by im-
perfect heuristics.94 Indeed, this is why the legal system often 
appears to practice a kind of externalist sincerity. When an ap-
pellate judge reviews a trial court judge’s decision, the appellate 
judge takes the trial judge’s opinion at face value and evaluates 
whether it contains what Cohen would call legitimate normative 
reasons.95 It is entirely plausible that the judge is a closet racist 
and actually decided on the basis of illegitimate motivating rea-
sons. But an appellate judge would look at the stated reasons. 
And, of course, the set of stated reasons supporting a decision is 
not unique. There are many rationales that the trial judge can 
give to justify a particular choice. What the appellate judge looks 
for is whether the reasons given are indeed legitimate. But no-
tice that if judges could produce motivating reasons, that would 
be a fantastic trait of their written decisions, which would allow 
for much more effective appellate review and for self-correction. 
The main problem in non-algorithmic decision making is that we 
cannot require judges to do the impossible. 

But what is impossible for judges is not impossible for algo-
rithmic decision-makers. Hence, in the context of algorithms, we 
can demand sincerity (in the sense of producing motivating rea-
sons) without violating the Ought Implies Can principle. 

For algorithms, motivating reasons would roughly corre-
spond to reasons that are not post hoc—i.e., reasons that caus-
ally connect the model’s features to its prediction. This is also 
what the Canadian bill on explainability, with which this paper 
began, calls “principal factors.”96 For example: we might say that 
 
 94. See Robert A. Prentice, Behavioral Ethics: Can It Help Lawyers (and 
Others) Be Their Best Selves?, 29 NOTRE DAME J.L. ETHICS & PUB. POL’Y 35, 
69–72 (2015) (listing six common rationalizations for engaging in corrupt be-
havior); Mark Kelman, Moral Realism and the Heuristics Debate, 5 J. LEGAL 
ANALYSIS 339, 347–48 (2013) (examining the impact of biases and imperfect 
heuristics on an individual’s ability for rational decision-making). 
 95. See Cohen, supra note 24, at 1097 n.23 (“The criterion for a motivating 
reason is roughly that it explains rather than justifies a person’s actions or de-
cisions, whereas the criterion for a normative reason is that it justifies rather 
than explains that person’s actions or decisions.”). 
 96. Bill C-27, supra note 5, § 63(4) (“The explanation must indicate the type 
of personal information that was used to make the prediction, recommendation 
or decision, the source of the information and the reasons or principal factors 
that led to the prediction, recommendation or decision.” (emphasis added)). 
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someone is admitted to law school if their combined LSAT and 
GPA score reaches a certain threshold, (t), on a standardized 
scale. This is a causal explanation within the model—any tink-
ering with either the LSAT or the GPA in a way that produces a 
score above the threshold will in fact lead to admission given this 
model. At the risk of being unduly anthropomorphic, we could 
call this an algorithm’s motivating reasons. For interpretable al-
gorithms, such reasons can be produced. When it comes to algo-
rithms, therefore, we have models that can produce the algorith-
mic analogue to motivating reasons. And hence we should use 
those models wherever possible. In short, there is an epistemo-
logical problem given our own limited cognitive capacities, which 
makes it difficult or impossible for us to know what our own mo-
tivating reasons are. That is why it is reasonable to tolerate in-
ternalist insincerity in legal decision-making, as Cohen sug-
gests.97 But this limitation does not exist for AI/ML. Hence, we 
should not tolerate insincerity in explanations. 

D. FROM INSINCERITY TO RESENTMENT 
Just adjacent to the argument we have offered here, pertain-

ing to sincerity and justification, is a still more philosophical 
question we highlight for future work: the relationship of AI/ML, 
explanation, and reactive attitudes. While explanations are par-
ticularly useful for action guiding, where we argued motivating 
reasons are central, they can also play another more normative 
role, where motivating reasons can be even more salient: we of-
ten want an explanation because we are interested in answering 
questions about moral responsibility, broadly construed. When 
we think a mistake has occurred, we want to potentially blame 
someone. And indeed, when a correct decision is made, we want 
to praise someone as well. As automated systems become in-
creasingly prevalent, they will also become the subjects of such 
intentional attitudes. 

In particular, as Boris Babic and Zoë Johnson King argue,98 
automated decisions can become the subject of second person 
 
 97. See Cohen, supra note 24, at 1125–34 (comparing arguments for and 
against imposing internalist sincerity requirements). 
 98. See Boris Babic & Zoë A. Johnson King, Algorithmic Fairness and Re-
sentment, PHIL. STUD., Aug. 28, 2023, at 12 (“We hold that, as with human 
agents, decision-making algorithms can be seen as fair if the interests of 
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“reactive” attitudes, as P.F. Strawson calls them,99 such as 
blame, praise, contempt, and resentment. As Strawson puts it, 
“it matters to us, whether the actions of other people . . . reflect 
attitudes towards us of goodwill, affection, or esteem . . . or con-
tempt, indifference, or malevolence . . . .”100 This is often de-
scribed as the quality of will approach to moral responsibility—
we care about the quality of will others display toward us.101 This 
is where the “fool’s gold” nature of explainability algorithms, as 
we have called it, might be the most fraught. 

There are many situations where a decision will naturally 
invite reactive attitudes among those concerned. For example, 
suppose that a family member in need of an organ donation is 
assigned a low rank in an allocation system for one of a limited 
number of kidneys, where the assignment is based (at least in 
part) on a prediction of how medically urgent a transplant would 
be for that patient. Now suppose further that an explainability 
algorithm is used to generate an explanation as to why this pa-
tient was deemed less medically urgent, and the explanation 
identifies age and gender as salient factors in the prediction. 
Suppose further that the patient or a civil society group finds it 
inappropriate for such decisions to be based on gender and wants 
to condemn this as a “sexist algorithm.” (This is not so far-
fetched—an organ transplant-related algorithm was recently de-
commissioned for fear it was producing unjustified results that 
disfavored Black patients.)102 

 
different individuals and groups matter equally to them and biased if certain 
groups or individuals’ interests matter more than others.”). 
 99. See Strawson, supra note 21, at 4–6 (examining how individuals’ per-
ceptions and behaviors are impacted by their reaction to others). 
 100. Id. at 5. 
 101. There is a question here about whether algorithms can be the sort of 
agents that are subject to intentional attitudes. Can we even evaluate algo-
rithms with respect to their quality of will? Babic and Johnson King argue that 
algorithms are indeed appropriate moral agents for Strawsonian reactive atti-
tudes. In this Article, we adopt their perspective as to algorithmic quality of 
will. See Babic & Johnson King, supra note 98 (concluding algorithms can be 
subject resentment and indignation). 
 102. See Racial Bias in Clinical Tools and Impact on Organ Donation, AM. 
SOC’Y OF TRANSPLANTATION (Apr. 21, 2021), https://www.myast.org/sites/ 
default/files/Racial%20Bias%20in%20Clinical%20Tools%202021.04.21.pdf 
[https://perma.cc/38HC-2CG4] (“In present-day models of organ allocation . . . 
misuse of race as a predictive variable has . . . disproportionally  
 



 
2023] ALGORITHMIC EXPLAINABILITY 903 

 

In such cases—cases that invite reactive attitudes—post hoc 
explanations not only fail to provide the benefits touted of them, 
but they can also further undermine the legitimacy of automated 
systems by presenting a narrative that seems intentional in a 
way that it can be the subject of blame, praise, or resentment, 
when in fact it is not. Reactive attitudes require motivating rea-
sons. In order to assess someone’s quality of will, we need evi-
dence of why they do what they do—we need to know the reasons 
that make them act the way they do.103 

Indeed, even if someone does the right thing but for the 
wrong reasons, he or she could still be the subject of blame. For 
example, imagine an unscrupulous doctor who intentionally rec-
ommends unnecessary diagnostic tests to a patient in order to 
bill as many services as possible. The doctor does not have evi-
dence to believe the patient might be sick, but unbeknownst to 
him, one of the tests identifies an extremely rare and unsus-
pected tumor, which is then removed. We can still blame the doc-
tor for his unethical practices, even if in this case he accidentally 
did the right thing. 

Meanwhile, if people do the wrong thing for the right rea-
sons, we might still praise them for trying to do the right 
thing.104 Sticking with the earlier example, imagine a doctor who 
has strong and legitimate reasons to believe that a patient has a 
certain tumor that is malignant. The doctor removes the tumor, 
but it turns out to be benign and the operation, in retrospect, was 
unnecessary. We can still praise the doctor for acting diligently, 
responding to evidence, and recommending appropriate care as 
he ought to. In short, the fact that post hoc explanations cannot 
deliver motivating reasons means that we cannot use them as 
the grounds for reactive attitudes because reactive attitudes are 
particularly attuned to evaluating an agent’s quality of will. 

There are also cases that involve both action guidance and 
evaluative attitudes. In such cases, post hoc explanations are 
most treacherous. And as it turns out, many contexts where we 
wish to apply algorithmic systems are exactly of this sort. For 
instance, consider the ubiquitous case of an algorithm that 
 
disadvantage[d] pediatric and adult Black individuals seeking equitable access 
and care in the organ donation and transplant healthcare system.”). 
 103. See Strawson, supra note 21 (discussing reactive attitudes). 
 104. Johnson King, supra note 22, at 427 (“[S]omeone’s good intentions can 
be a redeeming feature even if they believe and act badly.”). 
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produces scores representing the financial risk of default in or-
der to determine whether an applicant receives a loan or not. 
First, there is an action-guiding component in cases like this: a 
rejected applicant would like to know what she needs to change 
in order to receive a loan the next time around. Second, the sit-
uation invites reactive attitudes: if we learn that the algorithm 
is mistakenly denying loans to, say, persons of color or women, 
at disproportionate rates, we are likely to feel indignant and 
blame the system. A post hoc explanation in this case will create 
a blameworthy straw man—it will generate reasons which are 
not the actual reasons for the decision. 

IV.  SHOULD INTERPRETABILITY BE REQUIRED?   
In the last two Parts, we have argued “don’t believe the 

hype” about explainability. Explainable AI/ML fails both to ef-
fectively guide action and to produce sincere explanations. Each 
failure is a problem for the case made by its scholarly champions 
as well as the legislators that want to adopt it as a legal require-
ment. 

By contrast, interpretable AI/ML does not produce the same 
problems—it can guide action and give the actual reasons for a 
result. The natural question is then: should policymakers re-
quire interpretable AI/ML models? Ultimately, our view is that 
while such models are desirable from a legal and political per-
spective, their use should not be mandated across the board. 
Such a position stands to undermine technological innovation 
too much. We also consider whether some decision-making con-
texts might require interpretable AI/ML models more than oth-
ers. Here, we tentatively conclude that in certain cases, where 
democratic freedoms or concerns of procedural justice arise, a 
policy prohibiting opaque models may indeed be appropriate. 

A. INTERPRETABILITY, ACTION GUIDANCE, AND ACCURACY 
While explainable AI/ML models generate a false sense of 

transparency, as we have argued, using interpretable AI/ML 
models allows users to understand the motivating reasons be-
hind a decision, and it enables them to plan accordingly. In our 
MIT Law example, a simplistic interpretable model could say 
something like this: every student whose sum of their LSAT 
score divided by 100 and their undergraduate GPA divided by 2 
exceeds 3.5 will be admitted. This is a very naive hypothetical 
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rule, but the idea is that it weighs an applicant’s LSAT and GPA 
roughly equally and admits every applicant whose combined 
score exceeds a certain threshold, in this case 3.5. For example, 
a student with a 175 LSAT and a 3.8 GPA would have a com-
bined score of 175/100 + 3.8/2 = 3.65. She would be admitted. A 
student with a perfect GPA (4.0) would need an LSAT score of at 
least 150 because they need to satisfy 2 + x/100 > 3.5, where x 
represents their LSAT score. A student with a perfect LSAT 
would need a GPA of at least 3.4 because they need to satisfy 1.8 
+ x/2 > 3.5. This naive rule could be made more intelligent with 
just a few simple tweaks. For example, MIT Law could add two 
simple conditions: every applicant whose combined score exceeds 
3.5 will be admitted, provided that (1) their GPA is at least 3.7 
and (2) their LSAT is at least 164. 

Such a rule is very effective at guiding behavior. Every ap-
plicant knows that if their GPA is under 3.7 or their LSAT score 
is under 164, it would be a waste of their time and money to ap-
ply. They can also compute their threshold score exactly. And if 
they cannot be admitted this year, they can determine whether 
it is worthwhile to try and improve their LSAT score, their GPA, 
or both in order to apply next year. 

So why not always use such simple and transparent rules? 
Indeed, some authors argue we should.105 There are several ar-
guments given against interpretable AI/ML models. First, as the 
number of input variables grows, simple interpretable rules are 
harder to construct. Imagine if instead of LSAT and GPA, we 
had 10,000 observations for each applicant (educational history, 
extracurricular activities, work experience, their grade in every 
class taken, etc.). We could try to use a threshold rule, but if 
every applicant had to plug in 10,000 values in order to deter-
mine their prospects for admission, the rule would cease to be 
useful in its action guidance. 

Second, it has been argued that there is a fundamental 
trade-off between accuracy and interpretability, at least in some 

 
 105. See generally Rudin, supra note 12, at 206 (“[I]nterpretable models 
could potentially replace black box models in criminal justice, healthcare, and 
computer vision.”); Babic et al., supra note 13, at 286 (arguing that explainable 
models should be favored in the healthcare context when there are overarching 
concerns of justice regarding the fair allocation of resources). 
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contexts.106 While it may be a little bit fanciful to imagine 10,000 
values relevant to law school admission, that kind of high dimen-
sionality is the norm when it comes to image recognition or med-
ical forecasting based on genetic history. Indeed, image recogni-
tion, natural-language processing, and medical-forecasting 
models are often based on millions of input variables. And often, 
these variables are not intuitively meaningful—for example, 
they may represent pixel values instead of an applicant’s LSAT 
score. In cases like this, it can be hard to construct an interpret-
able AI/ML model that is as accurate as the most complex model 
available. 

Dziugaite and her colleagues articulate a mathematical ar-
gument for the existence of a trade-off between interpretability 
and accuracy.107 Increasing complexity gives a model more 
power and more flexibility to approximate highly non-linear fea-
ture-label relationships. Indeed, it is well known that most well-
behaved functions on a finite-dimensional feature space can be 
approximated arbitrarily accurately by a simple neural net-
work.108 If we require an AI/ML model to be interpretable, then 
we allow ourselves to use only a proper subset of the set of all 
possible models. As a result, it stands to reason that the best 
model in the proper subset may be worse than the best of all 
models.109 

But there are also reasons to doubt the existence of a trade-
off between accuracy and interpretability. Rudin explores many 
areas where there is no apparent advantage to using black-box 
models.110 For example, a simple three-rule model obtained by 

 
 106. E.g., Gintare Karolina Dziugaite et al., Enforcing Interpretability and 
Its Statistical Impacts: Trade-Offs Between Accuracy and Interpretability, 4–8 
(arXiv, Working Paper No. 2010.13764, 2020), (archived at https://perma.cc/ 
UZ4D-DUV2) (modeling the asserted trade-off between accuracy and interpret-
ability). 
 107. Id. 
 108. See Kurt Hornik et al., Multilayer Feedforward Networks Are Universal 
Approximators, 2 NEURAL NETWORKS 359, 360 (1989) (“[U]sing arbitrary 
squashing functions can approximate virtually any function of interest to any 
desired degree of accuracy . . . .”). 
 109. See Dziugaite et al., supra note 106, at 4–6 (modeling interpretability 
as a constraint). 
 110. See Rudin, supra note 12, at 3 (“When considering problems that have 
structured data with meaningful features, there is often no significant  
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the Certifiably Optimal Rule Lists (CORELS) algorithm attains 
the same accuracy as the well-known proprietary COMPAS re-
cidivism model on the Broward County, Florida, data.111 Rudin 
argues more generally, using a Rashomon-set strategy,112 that 
when a classification task is such that many models perform 
equally well on it, there likely exists one such AI/ML model that 
is interpretable.113 The reason we observe diminished perfor-
mance is not because interpretable AI/ML models are neces-
sarily worse, but simply because we have not yet identified the 
most accurate one for that particular task. 

Third, even if we cannot prove that opaque models neces-
sarily perform better in some cases, it can be argued that requir-
ing AI/ML models to be interpretable is a very intrusive policy 
strategy. In other words, one might argue that a blanket policy 
prohibiting deep learning models and complex neural networks 
is antithetical to technological development and innovation. This 
libertarian argument is particularly compelling when there is 
still a lot of uncertainty about which models work best and under 
what types of circumstances. Prohibiting manufacturers from 
using the latest and most exciting algorithms, the argument 
goes, would simply be too heavy handed. 

As a result of the three arguments given above, we do not 
want to go so far as to suggest that policymakers should require 
interpretable AI/ML models. Instead, we would like to shift the 

 
difference in performance between more complex classifiers (deep neural net-
works, boosted decision trees, random forests) and much simpler classifiers (lo-
gistic regression, decision lists) after preprocessing.”). 
 111. See Elaine Angelino et al., Learning Certifiably Optimal Rule Lists for 
Categorical Data, 18 J. MACH. LEARNING RSCH., June 2018, at 1 (“Our results 
indicate that it is possible to construct optimal sparse rule lists that are approx-
imately as accurate as the COMPAS proprietary risk prediction tool on data 
from Broward County, Florida, but that are completely interpretable.”). 
 112. A Rashomon set is a set of models that perform similarly well on a task. 
Lesia Semenova et al., On the Existence of Simpler Machine Learning Models, 
2 (arXiv, Working Paper No. 1908.01755, 2022) (archived at https://perma.cc/ 
8XCS-LLBT) (presented at the 2022 ACM Conference on Fairness, Accountabil-
ity, and Transparency). The name comes from Akira Kurosawa’s film, 
Rashomon, in which multiple people describe the murder of a samurai from dif-
ferent perspectives. 
 113. Rudin, supra note 12, at 17 (“Consider that the data permit a large set 
of reasonably accurate predictive models to exist. Because this set of accurate 
models is large, it often contains at least one model that is interpretable. This 
model is thus both interpretable and accurate.”). 
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conversation: the default assumption should be that a simple in-
terpretable AI/ML model ought to be used unless there is some 
evidence that an opaque model would be more suitable. Cur-
rently, in many applications, the default is reversed: the starting 
point is to apply a deep learning model to just about any task 
even if the use of such a complex model is not at all motivated.114 

B. INTERPRETABILITY AND PROCEDURAL JUSTICE 
Finally, even though we stop short of arguing that interpret-

able AI/ML models should be required, as opposed to black-box 
ones, there are some specific contexts where that policy may be 
wise. For example, imagine a situation where a scarce number 
of organs is allocated on the basis of an algorithm that deter-
mines the most suitable patients for a transplant. For someone 
who is denied a transplant, especially in a healthcare system 
that is at least in part public, it would be eminently reasonable 
for that patient or his physician to inquire on what basis a pa-
tient’s suitability was determined: To what extent did the algo-
rithm use comorbidities? Age? Smoking status? Predicted lon-
gevity? Contribution to society? Income? Marriage status? 
Ethnicity? Religion? These are not questions we can answer us-
ing explainable AI/ML, for the reasons we have argued in this 
Article. But under interpretable AI/ML models, the actual fea-
tures used will be immediately available. And in a context like 
the allocation of scarce medical resources, where patients may 
want to appeal decisions, and where trust and democratic legit-
imacy are paramount, it may be prudent to limit ourselves to 
interpretable AI/ML models. 

Indeed, these advantages of interpretable AI/ML may be 
compelling even if there is some accuracy cost and some impedi-
ment to technological innovation. To put it sharply, one may pre-
fer a more interpretable AI/ML model for organ allocation that 
 
 114. There is an interesting sociological question about why this has become 
the default, though we can only speculate: a cultural explanation may be that 
we have a generation of computer scientists who have been trained on cutting 
edge deep learning and neural networks, and when faced with a problem they 
do what they were trained to do, even if an interpretable model might be just as 
good. A more economic argument is that the deep learning and neural networks 
are attractive from an intellectual property and competition perspective: with-
out the underlying data sets, which along with other elements companies try to 
protect via trade secrecy, they are harder to reverse engineer or even to evalu-
ate. 
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everyone agrees does a less “good” job in deciding which patient 
gets offered an organ, as compared to the black-box model, as-
suming the more interpretable model can do so in a way that is 
more transparent. In some contexts, we should be willing to 
trade a little (or perhaps even a lot) of accuracy for more visibil-
ity into the reasons given. Without purporting to map out all the 
contexts where these trade-offs particularly favor interpretabil-
ity, we would suggest that a prime example of a case where this 
is true is the use of algorithms in the criminal justice system. 

  CONCLUSION   
In this Article, we have suggested that the current enthusi-

asm among scholars and among policymakers for explainable 
AI/ML is misplaced. While running a second algorithm to ex-
plain a black-box seems neat in theory, we have suggested two 
main reasons why the explanations it offers are not the kinds of 
explanations worth having: that its explanations often fail to be 
action guiding and that they often can be insincere. At the same 
time, we have not argued that policymakers should adopt a cat-
egorical rule rejecting black-boxes and requiring interpretable 
AI/ML. There are some instances where the benefits of a black-
box might justify its usage, but we do think a strong presumption 
in favor of interpretable AI/ML that must be overcome before a 
black-box is used might be a good background rule. Importantly, 
as we have explained, there may be some contexts where, even 
when everyone agrees that an interpretable AI/ML will produce 
less accurate or otherwise worse results, its benefits to transpar-
ency and procedural justice might justify favoring it. 

 


